期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于术中指标建立非心胸手术术后呼吸衰竭梯度提升预测模型
1
作者 黄家号 李雨捷 +5 位作者 刘祥 杨智勇 孙义竹 梁浩 易斌 鲁开智 《陆军军医大学学报》 CAS CSCD 北大核心 2023年第8期739-745,共7页
目的开发并验证一个基于术中指标在非心胸手术患者术后呼吸衰竭(postoperative respiratory failure,PRF)的机器学习预测模型。方法纳入西南医院2014年1月至2019年6月行非心胸手术患者705例[训练集565例(PRF 128例),测试集140例(PRF 35... 目的开发并验证一个基于术中指标在非心胸手术患者术后呼吸衰竭(postoperative respiratory failure,PRF)的机器学习预测模型。方法纳入西南医院2014年1月至2019年6月行非心胸手术患者705例[训练集565例(PRF 128例),测试集140例(PRF 35例)]、华西医院2019年5月至2020年1月和中山医院2019年6月至2019年12月行非心胸手术患者164例[验证集164例(PRF 41例)]。提取患者19项术中预测指标,通过6种机器学习算法:梯度提升模型(gradient boosting model,GBM)、广义线性模型(generalize linear model,GLM)、k-近邻(k-nearest neighbor,KNN)、朴素贝叶斯(naive bayes,NB)、神经网络(neural network,NNET),支持向量机(support vector machine linear,SVM)开发及测试模型,并在验证集进行验证,通过各模型间性能对比,筛选出最佳模型,最终建立网页预测模型。结果GBM获得了最佳性能,准确性76.2%(95%CI:69.0%~82.5%),受试者操作曲线下面积(area under the subject curve,AUC):0.794(95%CI:0.707~0.882),精准-召回曲线下面积(area under the precision-recall curve,AUPRC):0.641,Brier评分:0.169。结论基于GBM算法开发的模型具有更高的泛化性、准确性、临床实用性,并有助于避免过度拟合。建立的网页预测模型(http://150.158.55.139)可为患者PRF提供新的动态评估方法,量化手术风险。 展开更多
关键词 术后呼吸衰竭 预测模型 临床实用性 量化手术风险
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部