合成孔径雷达(Synthetic aperture radar,SAR)图像因为相干斑现象和目标响应的空间变化呈现出一种纹理特性,局部二进编码等局部图像特征在光学纹理描述中获得较好的结果,但光学纹理特征在描述SAR图像纹理特性中因为相干成像特性往往失效...合成孔径雷达(Synthetic aperture radar,SAR)图像因为相干斑现象和目标响应的空间变化呈现出一种纹理特性,局部二进编码等局部图像特征在光学纹理描述中获得较好的结果,但光学纹理特征在描述SAR图像纹理特性中因为相干成像特性往往失效.本文在前期工作纹理特征框架的基础上,提出了一种局部重要性采样二进编码的SAR图像纹理特征(Feature extraction based on local important sampling binary,LISBF)描述方法:首先,利用样本图像对局部采样位置进行随机自适应采样,基于重要性采样(Important sample,IS)方法输出递归学习位置结果;然后,利用学习出的纹理重要采样点对进行二进特征编码;最后,通过映射和统计生成描述算子.该特征较固定位置采样能够获取更大范围信息,同时能通过采样避免特征维数的急剧增大;通过自适应学习重要性关键点较随机采样更容易捕捉纹理固有信息;较好地适应了SAR图像极低信噪比和斑点现象的纹理.本文将该特征用于真实图像和标准纹理库的分类研究,实验结果证明了该特征的有效性.展开更多
多目标视觉跟踪的主要困难来自于多个目标交互(部分或完全遮挡)导致的歧义性.马尔可夫随机场(Markov random field,MRF)可以消除这种歧义性且无需显式的数据关联.但是,通用概率推理算法的计算代价很高.针对上述问题,本文做出了3点贡献:1...多目标视觉跟踪的主要困难来自于多个目标交互(部分或完全遮挡)导致的歧义性.马尔可夫随机场(Markov random field,MRF)可以消除这种歧义性且无需显式的数据关联.但是,通用概率推理算法的计算代价很高.针对上述问题,本文做出了3点贡献:1)设计了新的具有"分散-集中-分散"结构的递归贝叶斯跟踪框架—自助重要性采样粒子滤波器,它使用融入当前时刻观测的重要性密度函数解决维数灾难问题,将计算复杂度从指数增长变为线性增长;2)提出了新的蒙特卡洛策略—自助重要性采样,利用MRF的因子分解性质进行重要性采样,并使用自助法产生低成本高质量的样本、降低似然度计算次数和维持多模式分布;3)采用了新的边缘化技术—使用辅助变量采样进行边缘化,使用自助直方图对边缘后验分布进行密度估计.实验结果表明,本文提出的算法能够对大量目标进行实时跟踪,能够处理目标间复杂的交互,能够在目标消失后维持多模式分布.展开更多
在连续动作任务中,深度强化学习通常采用高斯分布作为策略函数。针对高斯分布策略函数由于截断动作导致算法收敛速度变慢的问题,提出了一种重要性采样优势估计器(ISAE)。该估计器在通用优势估计器(GAE)的基础上,引入了重要性采样机制,...在连续动作任务中,深度强化学习通常采用高斯分布作为策略函数。针对高斯分布策略函数由于截断动作导致算法收敛速度变慢的问题,提出了一种重要性采样优势估计器(ISAE)。该估计器在通用优势估计器(GAE)的基础上,引入了重要性采样机制,通过计算边界动作的目标策略与行动策略比率修正截断动作带来的值函数偏差,提高了算法的收敛速度。此外,ISAE引入了L参数,通过限制重要性采样率的范围,提高了样本的可靠度,保证了网络参数的稳定。为了验证ISAE的有效性,将ISAE与近端策略优化结合并与其他算法在Mu Jo Co平台上进行比较。实验结果表明,ISAE具有更快的收敛速度。展开更多
文摘合成孔径雷达(Synthetic aperture radar,SAR)图像因为相干斑现象和目标响应的空间变化呈现出一种纹理特性,局部二进编码等局部图像特征在光学纹理描述中获得较好的结果,但光学纹理特征在描述SAR图像纹理特性中因为相干成像特性往往失效.本文在前期工作纹理特征框架的基础上,提出了一种局部重要性采样二进编码的SAR图像纹理特征(Feature extraction based on local important sampling binary,LISBF)描述方法:首先,利用样本图像对局部采样位置进行随机自适应采样,基于重要性采样(Important sample,IS)方法输出递归学习位置结果;然后,利用学习出的纹理重要采样点对进行二进特征编码;最后,通过映射和统计生成描述算子.该特征较固定位置采样能够获取更大范围信息,同时能通过采样避免特征维数的急剧增大;通过自适应学习重要性关键点较随机采样更容易捕捉纹理固有信息;较好地适应了SAR图像极低信噪比和斑点现象的纹理.本文将该特征用于真实图像和标准纹理库的分类研究,实验结果证明了该特征的有效性.
文摘多目标视觉跟踪的主要困难来自于多个目标交互(部分或完全遮挡)导致的歧义性.马尔可夫随机场(Markov random field,MRF)可以消除这种歧义性且无需显式的数据关联.但是,通用概率推理算法的计算代价很高.针对上述问题,本文做出了3点贡献:1)设计了新的具有"分散-集中-分散"结构的递归贝叶斯跟踪框架—自助重要性采样粒子滤波器,它使用融入当前时刻观测的重要性密度函数解决维数灾难问题,将计算复杂度从指数增长变为线性增长;2)提出了新的蒙特卡洛策略—自助重要性采样,利用MRF的因子分解性质进行重要性采样,并使用自助法产生低成本高质量的样本、降低似然度计算次数和维持多模式分布;3)采用了新的边缘化技术—使用辅助变量采样进行边缘化,使用自助直方图对边缘后验分布进行密度估计.实验结果表明,本文提出的算法能够对大量目标进行实时跟踪,能够处理目标间复杂的交互,能够在目标消失后维持多模式分布.
文摘在连续动作任务中,深度强化学习通常采用高斯分布作为策略函数。针对高斯分布策略函数由于截断动作导致算法收敛速度变慢的问题,提出了一种重要性采样优势估计器(ISAE)。该估计器在通用优势估计器(GAE)的基础上,引入了重要性采样机制,通过计算边界动作的目标策略与行动策略比率修正截断动作带来的值函数偏差,提高了算法的收敛速度。此外,ISAE引入了L参数,通过限制重要性采样率的范围,提高了样本的可靠度,保证了网络参数的稳定。为了验证ISAE的有效性,将ISAE与近端策略优化结合并与其他算法在Mu Jo Co平台上进行比较。实验结果表明,ISAE具有更快的收敛速度。