DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的基于密度的聚类算法,它通过两个全局参数即半径Eps和最少点数MinPts,能够对任意形状的数据进行聚类,并自动确定类个数。但是,使用全局半径的DBSCAN对...DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的基于密度的聚类算法,它通过两个全局参数即半径Eps和最少点数MinPts,能够对任意形状的数据进行聚类,并自动确定类个数。但是,使用全局半径的DBSCAN对于密度不均匀数据集的聚类效果较差,且无法对重叠数据集进行聚类。因此,定义了密度递减原则和局部半径,并根据k-近邻距离自动确定局部半径,从而提出了基于局部半径的DBSCAN算法(LE-DBSCAN);然后,通过考虑近邻的标签,对二支聚类结果的临界点和噪声点进行重新划分,从而提出了基于局部半径的三支DBSCAN算法(LE3W-DBSCAN)。将LE-DBSCAN和LE3W-DBSCAN与该领域的相关算法在UCI数据集和人工数据集上进行对比,实验结果表明,所提算法在常用的硬聚类指标和软聚类指标上都具有较好的表现。展开更多
文摘DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的基于密度的聚类算法,它通过两个全局参数即半径Eps和最少点数MinPts,能够对任意形状的数据进行聚类,并自动确定类个数。但是,使用全局半径的DBSCAN对于密度不均匀数据集的聚类效果较差,且无法对重叠数据集进行聚类。因此,定义了密度递减原则和局部半径,并根据k-近邻距离自动确定局部半径,从而提出了基于局部半径的DBSCAN算法(LE-DBSCAN);然后,通过考虑近邻的标签,对二支聚类结果的临界点和噪声点进行重新划分,从而提出了基于局部半径的三支DBSCAN算法(LE3W-DBSCAN)。将LE-DBSCAN和LE3W-DBSCAN与该领域的相关算法在UCI数据集和人工数据集上进行对比,实验结果表明,所提算法在常用的硬聚类指标和软聚类指标上都具有较好的表现。