期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
类别不均衡的少样本工业产品表观缺陷检测
1
作者 王素琴 杜雨洁 +1 位作者 石敏 朱登明 《图学学报》 北大核心 2025年第3期568-577,共10页
通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网... 通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网络复杂度的同时增强网络非线性能力,以避免过拟合风险。利用聚合模块VoV-GSCSP进一步提取与融合不同层次特征,提升网络特征提取与融合能力。通过采用重加权损失函数以平衡不同类别样本的训练损失贡献,加大尾部类别样本的损失贡献占比,从而提高尾部类别缺陷的检测精度。相比基线模型,改进方法对针灸针表观缺陷检测精度mAP为93.3%,提高5.0%,样本最少的断针缺陷提升9.1%;药板表观缺陷检测精度mAP为91.4%,提高2.6%,样本最少的脏污缺陷提升3.2%。在样本较多且分布不均衡的钢材数据集上,整体缺陷检测精度mAP提高2.6%。实验表明,该改进方法在缺陷样本少且类别分布不均衡时,可有效提升工业产品表观缺陷总体检测精度,对样本稀少的尾部类别检测精度改善明显,泛化性良好。 展开更多
关键词 表观缺陷检测 少样本 类别不均衡 GSConv 重加权损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部