针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相...针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
文摘针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.