期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多层级特征自适应融合的图像分割算法 被引量:1
1
作者 袁小平 何祥 +1 位作者 王小倩 胡杨明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1958-1966,共9页
为了解决传统算法对医学图像分割时精度较低的问题,提出基于多层级特征自适应融合的新型FRUnet图像分割算法.在编码器阶段,设计采样加权模块替代传统卷积层,对图像空间信息进行逐层提取和特征融合,获得相邻像素之间的相关性和不同层次... 为了解决传统算法对医学图像分割时精度较低的问题,提出基于多层级特征自适应融合的新型FRUnet图像分割算法.在编码器阶段,设计采样加权模块替代传统卷积层,对图像空间信息进行逐层提取和特征融合,获得相邻像素之间的相关性和不同层次的语义信息.在解码器阶段,设计多层级自适应融合模块,通过非线性跳跃连接逐层提取图像通道信息,自适应地融合邻近连接层的上下文信息,使各层专注不同特征信息的提取.FR-Unet在模型参数量上大幅度减少,让网络在场景部署上得到更好的支持.实验结果表明,该网络在动物细胞分割、肝脏器官分割、皮肤病变分割等众多任务中均表现突出. 展开更多
关键词 图像分割 FR-Unet 逐层提取 采样加权模块 多层级自适应融合模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部