期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
整合改进YOLOv8与三角网的露天矿山采场指标提取方法
1
作者 李天文 李功权 李俊涛 《工矿自动化》 北大核心 2025年第4期19-27,共9页
基于深度学习的露天矿山遥感影像研究为露天矿山采场的快速识别与提取提供了方向,但在露天矿山的实际应用仍局限于识别阶段,存在露天矿山边界提取不准确、模型训练时样本分布不平衡等问题。针对上述问题,提出了一种整合改进YOLOv8与三... 基于深度学习的露天矿山遥感影像研究为露天矿山采场的快速识别与提取提供了方向,但在露天矿山的实际应用仍局限于识别阶段,存在露天矿山边界提取不准确、模型训练时样本分布不平衡等问题。针对上述问题,提出了一种整合改进YOLOv8与三角网的露天矿山采场指标提取方法。在YOLOv8的基础上进行以下改进,得到Mine-YOLO:添加高效多尺度注意力(EMA)模块,以提高模型对矿山采场边界细节的识别与分割精度;添加全局注意力机制(GAM)模块,从全局尺度保留露天矿山采场特征数据,提高采场目标识别精度;采用Focaler-IoU损失函数优化,增强模型对正样本的区分能力。根据无人机获取的露天矿山数字高程模型(DEM)数据,结合Mine-YOLO模型进行识别与分割处理,获取露天矿山采场区域DEM影像,并自动建立不规则三角网,实现对露天矿山采场面积、体积和采深的精确定量监测。实验结果表明,Mine-YOLO模型在采场识别与分割方面的平均精度均值分别达0.942和0.865,具有较高的识别精度和较好的分割效果。实际应用结果表明,基于Mine-YOLO模型提取的采场数据与传统测量值相差不大,平均面积误差为5.8%,平均体积误差为4.9%,最小采深误差仅为0.2%。 展开更多
关键词 露天矿山 采场信息提取 改进YOLOv8 不规则三角网 空间注意力机制 目标识别 目标分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部