为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进...为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进行对比,实验结果表明,从算法运行时间看,DBSCAN++比DBSCAN平均降低了60.7%,比OPTICS平均降低了70.2%;从聚类准确性角度看,DBSCAN++与DBSCAN和OPTICS相当。在没有影响聚类准确性的情况下,DBSCAN++具有更低的运行时间,是一种有效的聚类算法。展开更多
文摘为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进行对比,实验结果表明,从算法运行时间看,DBSCAN++比DBSCAN平均降低了60.7%,比OPTICS平均降低了70.2%;从聚类准确性角度看,DBSCAN++与DBSCAN和OPTICS相当。在没有影响聚类准确性的情况下,DBSCAN++具有更低的运行时间,是一种有效的聚类算法。