期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于梯度聚类的有序点云边缘优化提取方法 被引量:2
1
作者 陈浩 丁其川 潘磊 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第5期165-174,共10页
应用传统的2D边缘检测器检测低分辨率深度图中物体边缘时,边缘检测精度较差,召回率低;而当前基于3D点云的边缘提取方法也存在实时性差、抗干扰能力弱等缺点。为此,提出一种基于梯度聚类的边缘优化提取方法,实现从有序点云中快速、稳定... 应用传统的2D边缘检测器检测低分辨率深度图中物体边缘时,边缘检测精度较差,召回率低;而当前基于3D点云的边缘提取方法也存在实时性差、抗干扰能力弱等缺点。为此,提出一种基于梯度聚类的边缘优化提取方法,实现从有序点云中快速、稳定地检测物体的边缘。首先,通过邻域点距离分析滤除飞行像素噪声,消除边缘误检;其次,提出一种基于梯度聚类的边缘点/非边缘点分离方法,快速获取物体的粗边缘;最后,结合快速平行细化算法与掩膜滤波,优化粗边缘,获得物体精确边缘。在公共数据集和TOF相机实测数据上进行实验验证。结果表明,提出方法的实时性与检测精度均优于现有方法,在实测数据中的边缘检测精度达89%,FPS达28 fps。 展开更多
关键词 深度相机 边缘检测 邻域点距离分析 梯度聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部