针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间...针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。展开更多
提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠...提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。展开更多
文摘针对带时间窗的车辆路径问题(Vehicle Routing Problems with Time Windows,VRPTW),提出了一种混合粒子群优化算法(Hybrid Particle Swarm Optimization,HPSO)进行求解。所提出的算法设计了一种高效的编解码策略,以此搭建HPSO算法解空间到VRPTW解空间的桥梁。同时为了提高算法的寻优能力,设计了由单点插入策略以及双点交换策略组成的局部搜索策略。通过solomon-50标准数据集中的九个算例进行仿真实验,实验结果证明了所提出算法的寻优能力和稳定性均优于对比算法,最优解误差相较于对比算法最多降低了38.32%。
文摘提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。