为了在复杂多变的电子战场景下对密集重叠的雷达脉冲信号进行快速准确的分选,稀释脉冲流,解决现有基于密度的空间聚类算法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)在分选时易受干扰点影响、聚类参数需要...为了在复杂多变的电子战场景下对密集重叠的雷达脉冲信号进行快速准确的分选,稀释脉冲流,解决现有基于密度的空间聚类算法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)在分选时易受干扰点影响、聚类参数需要人为设置、算法复杂度高的问题,提出了一种面向雷达信号预分选的粒子群快速密度聚类算法(Particle Swarm Fast Density Clustering Algorithm,PSK-DBSCAN)。该算法首先引入数据场理论剔除雷达脉冲信号里的干扰点,提升了分选准确度;其次,引入粒子群算法并设计了基于轮廓系数的适应度函数,自适应地获得最优聚类参数;最后,使用K-D(K-Dimensional)树降低DBSCAN的算法复杂度,减少分选时间。经实验验证,算法可以对复杂交错的雷达脉冲信号实现快速聚类分选,正确率达到98.9%,性能稳定。展开更多
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中...为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。展开更多
文摘为了在复杂多变的电子战场景下对密集重叠的雷达脉冲信号进行快速准确的分选,稀释脉冲流,解决现有基于密度的空间聚类算法(Density-based Spatial Clustering of Applications with Noise,DBSCAN)在分选时易受干扰点影响、聚类参数需要人为设置、算法复杂度高的问题,提出了一种面向雷达信号预分选的粒子群快速密度聚类算法(Particle Swarm Fast Density Clustering Algorithm,PSK-DBSCAN)。该算法首先引入数据场理论剔除雷达脉冲信号里的干扰点,提升了分选准确度;其次,引入粒子群算法并设计了基于轮廓系数的适应度函数,自适应地获得最优聚类参数;最后,使用K-D(K-Dimensional)树降低DBSCAN的算法复杂度,减少分选时间。经实验验证,算法可以对复杂交错的雷达脉冲信号实现快速聚类分选,正确率达到98.9%,性能稳定。
文摘为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。