期刊文献+
共找到3,914篇文章
< 1 2 196 >
每页显示 20 50 100
基于深度神经网络的遗传算法对抗攻击 被引量:1
1
作者 范海菊 马锦程 李名 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期82-90,I0007,共10页
深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个... 深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个基于卷积神经网络图像分类器的成功攻击.实验结果表明在对3个分类模型进行单像素攻击时,67.92%的CIFAR-10数据集中的自然图像可以被扰动到至少一个目标类,平均置信度为79.57%,攻击效果会随着修改像素的增加进一步提升.此外,相比于LSA和FGSM方法,攻击效果有着显著提升. 展开更多
关键词 卷积神经网络 遗传算法 对抗攻击 图像分类 信息安全
在线阅读 下载PDF
基于BP神经网络和遗传算法的铜-铝双层药型罩结构优化设计
2
作者 李伟芾 高绪杰 +2 位作者 常征 朱立华 朱光明 《兵器装备工程学报》 北大核心 2025年第8期89-95,共7页
为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性... 为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性。同时,构建了BP人工神经网络模型,并将预测值作为适应度,使用遗传算法以侵彻深度为优化目标得到对应的最佳结构参数。研究结果表明:当药型罩锥角为59.07°,壁厚为1.66 mm,长径比为1.36,Cu/Al壁厚比为2.38∶1时,形成的射流侵彻深度相较正交试验优化结果更好。 展开更多
关键词 双层药型罩 BP神经网络 遗传算法 结构优化 数值模拟
在线阅读 下载PDF
基于遗传算法BP神经网络的猫粮糊化特性研究
3
作者 张琦 许耀辉 +6 位作者 陈阳 韩栋梁 张润哲 严骅彬 Lela Susilawati 魏文广 奚小波 《中国饲料》 北大核心 2025年第9期87-92,共6页
为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/... 为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/21)进行研究。结果表明:随着转子转速的增加,峰值黏度、谷值黏度、终值黏度显著降低,衰减值变小,热糊稳定性增强。随着保持温度的增加,峰值黏度增加,谷值黏度和终值黏度先上升后下降,淀粉糊稳定性变差,原料更容易糊化。随着猫粮质量的增加,糊化温度降低,峰值黏度、谷值黏度、终值黏度增大,淀粉糊稳定性降低,凝胶性增强。另外,以本试验数据为基础,提出一种基于遗传算法的神经网络预测峰值黏度的模型。 展开更多
关键词 转速 温度 淀粉 糊化特性 神经网络 遗传算法 快速黏度分析仪(RVA)
在线阅读 下载PDF
利用非支配排序遗传算法优化卷积神经网络研究节点地震仪RFID测距
4
作者 庞聪 林春晓 +3 位作者 李忠亚 江勇 陈国庆 宋莹莹 《大地测量与地球动力学》 北大核心 2025年第10期1079-1084,共6页
针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)... 针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)的2个优化目标函数,其自变量统一为学习率下降因子、初始学习率、批大小等一维卷积神经网络(1D-CNN)超参数,因变量分别为网络预测结果与理论值的决定系数(R^(2))和平均偏差误差(MBE);最后以最佳超参数值构成NSGAⅢ-1D-CNN新模型,以提高RFID测距模型的稳定性和精确度。实验结果表明,新模型在100轮循环实验下的节点地震仪RFID测距误差较小,在R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、MBE等多个指标上均表现优异,均值分别为0.9779、0.0586 m、0.0472 m、-0.0013 m,相对于其他模型具有更高的测距定位精度,在野外物探中具有一定应用价值。 展开更多
关键词 节点地震仪 RFID测距 一维卷积神经网络 超参数优化 非支配排序遗传算法 多目标优化
在线阅读 下载PDF
遗传算法优化神经网络在地声参数反演中的应用 被引量:1
5
作者 赵振星 李琪 黄益旺 《哈尔滨工程大学学报》 北大核心 2025年第4期643-651,共9页
针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,... 针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,最后使用GA-BP处理实测海洋环境噪声数据,估计了海底密度、声速和衰减。仿真与实验结果表明:GA-BP相比于BP神经网络算法具有更快的网络训练速度以及更高的反演精度,利用GA-BP可以准确反演得到Pekeris波导的地声参数。反演得到的海洋环境噪声场空间相关系数曲线与实验测量结果吻合较好,二者皮尔逊相关系数达到0.98。本文证实了GA-BP算法在地声参数反演中的高效性与可靠性,为基于海洋环境噪声的无源地声参数提供了的技术支撑手段。 展开更多
关键词 海洋环境噪声 空间相关特性 敏感度分析 遗传算法 BP神经网络 Pekeris波导 地声参数反演 海上实验
在线阅读 下载PDF
基于Smith预估和遗传算法的低温场神经网络控制
6
作者 朱志祥 王学庆 +2 位作者 李旭 刘海波 王永青 《组合机床与自动化加工技术》 北大核心 2025年第1期190-194,200,共6页
低温度场广泛存在于生物医疗、低温加工等过程中,热传导和传质等导致系统存在滞后特性。针对低温度场调控系统中时滞特性导致的系统超调、振荡等问题,在Smith预估结合PID控制基础上,引入了BP神经网络,实现了控制器增益的自适应调整。针... 低温度场广泛存在于生物医疗、低温加工等过程中,热传导和传质等导致系统存在滞后特性。针对低温度场调控系统中时滞特性导致的系统超调、振荡等问题,在Smith预估结合PID控制基础上,引入了BP神经网络,实现了控制器增益的自适应调整。针对传统神经网络学习算法增益调整速度慢、结果不稳定等问题,在充分考虑系统的动态模型下,提出了基于遗传算法的神经网络权值优化方法,实现了控制器增益的快速稳定调整。系统仿真结果表明,较PID-Smith控制、NNPID-Smith控制等,在低温度场时滞系统调控中超调较小,调整时间短,有效改善了低温度场调控过程中的系统稳定性。 展开更多
关键词 低温度场 时滞系统 Smith预估 神经网络 遗传算法
在线阅读 下载PDF
基于神经网络和遗传算法的宽带激光熔覆层形貌尺寸预测
7
作者 倪崇智 路妍 +4 位作者 颉潭成 王军华 徐彦伟 史墨可 翟文豪 《热加工工艺》 北大核心 2025年第10期78-83,共6页
针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经... 针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经网络预测模型的权值和阈值进行了优化。结果表明,BP神经网络预测熔覆层形貌尺寸的相对误差均在7.434%以内,GA-BP神经网络模型预测熔覆层形貌尺寸的相对误差均在5.348%以内。GA-BP神经网络模型在预测宽带激光熔覆层形貌尺寸方面精度较高,能有效指导宽带激光熔覆工艺参数的选择。 展开更多
关键词 宽带激光熔覆层 工艺参数 BP神经网络 遗传算法
在线阅读 下载PDF
基于神经网络代理模型和遗传算法的适伴流最佳环量对转桨设计方法
8
作者 薛颖 黄永生 杨晨俊 《船舶力学》 北大核心 2025年第4期517-527,共11页
基于升力面理论涡格法提出了一种适伴流最佳环量对转桨的设计方法。该方法首先建立了对转桨径向环量分布与推力、扭矩之间非线性关系的神经网络代理模型,其数据样本由涡格法计算得到;然后采用遗传算法,在给定总推力和扭矩平衡的约束条件... 基于升力面理论涡格法提出了一种适伴流最佳环量对转桨的设计方法。该方法首先建立了对转桨径向环量分布与推力、扭矩之间非线性关系的神经网络代理模型,其数据样本由涡格法计算得到;然后采用遗传算法,在给定总推力和扭矩平衡的约束条件下,以总效率为目标对前、后桨的径向环量分布进行优化;最后根据优化得到的最佳环量分布及指定的弦向负荷分布形式设计前、后桨的螺距分布及拱弧面。以高速水下航行体的对转桨为例进行研究,并用非定常RANS方法进行了自航模拟,验证结果表明,设计桨的自航点转速与原型桨基本相同,总效率和扭矩平衡度都有所提高。 展开更多
关键词 对转桨 适伴流 最佳环量分布 神经网络 遗传算法 涡格法
在线阅读 下载PDF
基于人工神经网络耦联遗传算法优化肉葡萄球菌高密度培养基配方
9
作者 王仪 祝超智 +4 位作者 白雪原 郑飏衣 张新军 仝林 赵改名 《肉类研究》 北大核心 2025年第5期1-9,共9页
为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algo... 为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algorithm,ANN-GA)模型。结果表明,氮源是影响肉葡萄球菌活菌数的最重要因素。与响应面优化模型相比,ANN-GA模型能够更精确地预测培养基配方对肉葡萄球菌活菌数的影响,误差小且优化效果更好,最佳培养基配方为葡萄糖3.21 g/L、大豆蛋白胨20.17 g/L、牛肉浸粉20.17 g/L、磷酸氢二钾5.63 g/L、氯化钠5.0 g/L、七水硫酸镁0.2 g/L。在5 L发酵罐水平小试最大活菌数可达1.67×10^(10)CFU/mL。 展开更多
关键词 肉葡萄球菌 高密度培养基 响应面法 人工神经网络 遗传算法 优化
在线阅读 下载PDF
基于遗传算法优化BP神经网络的板栗蒸腾量预测模型
10
作者 徐佳莹 宁璐 《南方农机》 2025年第14期5-8,20,共5页
【目的】准确估算作物蒸发蒸腾量并采用智能控制技术对灌溉量进行控制,减少作物生育期的水分消耗,提高作物水分利用率,发展节水农业。【方法】以北京农学院智能温室内盆栽板栗为研究对象,以光照强度、环境温度、环境湿度、环境内CO_(2)... 【目的】准确估算作物蒸发蒸腾量并采用智能控制技术对灌溉量进行控制,减少作物生育期的水分消耗,提高作物水分利用率,发展节水农业。【方法】以北京农学院智能温室内盆栽板栗为研究对象,以光照强度、环境温度、环境湿度、环境内CO_(2)含量、叶室内CO_(2)含量以及土壤含水量为主要测定影响因素,建立了一种基于遗传算法优化BP神经网络的板栗蒸腾量预测模型。并通过设立正常浇水组和抗旱少水组两个处理组,利用BP神经网络与遗传算法优化BP神经网络对测试数据进行建模,对比两种算法的仿真时间和预测误差。【结果】正常浇水组优化后的建模仿真时间减少了4.937 55 s,抗旱少水组优化后的建模仿真时间减少了6.124 97 s;正常浇水组优化后的误差值降低了0.737 9,抗旱少水组优化后的误差值降低了1.572 5,说明遗传算法优化BP神经网络预测模型的综合预测结果更优。【结论】遗传算法优化BP神经网络预测模型有效修正了传统BP神经网络预测过程中存在的弊端,能够更好地展现板栗蒸腾量的非线性特性。本研究可为植株蒸腾量估算和实际需水量计算提供新思路和方法,对植株实现智能化控制具有重要的理论意义和实用价值。 展开更多
关键词 遗传算法 BP神经网络 蒸腾量预测
在线阅读 下载PDF
基于神经网络和遗传算法的机器人加工工艺优化
11
作者 吴福森 《金刚石与磨料磨具工程》 北大核心 2025年第2期256-265,共10页
以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模... 以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模型训练并进行预测;最后,采用遗传算法对磨削加工工艺参数进行优化。结果表明:磨削工艺参数对3个磨削力分量和磨削合力的影响主次顺序不同,基本上都随径向切深a_(e)、轴向切深a_(p)、进给速度v_(w)的增加呈增长趋势,随主轴转速n的增加呈下降趋势;基于BP神经网络建立的预测模型具有较好的预测精度和稳定性,符合预测要求;同时,采用遗传算法得到的优化磨削工艺参数组合是a_(e)=2.28 mm,a_(p)=2.98 mm,n=9586.65 r/min,v_(w)=2207.67 mm/min,此时的材料去除率预测值_(RMRRP)=14999.79 mm^(3)/min,材料去除率试验值R_(MRRT)=14194.44 mm^(3)/min,试验值相对预测值的相对误差为-5.37%。 展开更多
关键词 机器人加工 正交试验 BP神经网络 遗传算法 工艺参数优化
在线阅读 下载PDF
基于BP神经网络——遗传算法的咖啡壳炭化工艺参数优化
12
作者 张霞 苏盼杰 +2 位作者 朱静哲 王伊洋 黄峻伟 《智能化农业装备学报(中英文)》 2025年第1期51-58,共8页
生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备... 生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备过程中的炭化温度、炭化时间和升温速率等工艺参数的显著影响,不同炭化工艺不仅决定了生物炭的理化性质,还直接影响其作为炭基肥的缓释性能。传统的实验方法往往需要大量的时间和资源投入,因此,探索更加高效的优化方法成为了研究的热点。本研究采用了BP神经网络与遗传算法相结合的优化方法,针对咖啡壳生物炭的炭化过程中的炭化温度、炭化时间和升温速率3个关键工艺参数进行预测和优化。研究结果表明,采用BP神经网络—遗传算法优化后的炭基肥,其最佳工艺参数为炭化时间2.8 h、炭化温度780.7℃和升温速率15.1℃/min。在此工艺条件下制备的咖啡壳生物炭基肥,其7 d养分累计释放率为45.9%,表明缓释性能得到了显著提升。综上所述,本研究提出了一种基于BP神经网络和遗传算法的生物炭炭化工艺参数优化方法,能够有效提高炭基肥的缓释性能。该方法不仅为生物炭制备工艺的优化提供了新的技术路径,也为相关领域的研究提供了重要参考,对推动高性能炭基肥的发展具有积极意义。 展开更多
关键词 生物炭 BP神经网络 遗传算法 炭基肥 工艺参数优化
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
13
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-BP神经网络 遗传算法
在线阅读 下载PDF
基于旗鱼算法优化BP神经网络的水-能源-粮食耦合系统安全特征测度分析
14
作者 刘东 刘海岳 +2 位作者 张祥敏 张亮亮 齐晓晨 《农业工程学报》 北大核心 2025年第11期229-242,共14页
针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦... 针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦合系统安全特征测度分析中。采用基于主成分分析法-R聚类分析法-皮尔逊相关系数法-变异系数法的优选方法构建WEF耦合系统安全评价指标体系。深入分析耦合系统安全时间演变特征与关键驱动因子。结果表明:哈尔滨市WEF耦合系统安全指数在研究时段内呈现先波动变化,后大幅提升,最后趋于稳定的趋势。降水量、顷均机电井数目、人均粮食产量和农机总动力等为关键驱动因子。构建的SFO-BPNN模型与传统BP神经网络模型和基于遗传算法优化的BP神经网络模型相比,平均绝对误差分别降低16.94%和3.36%、均方误差分别降低26.40%和16.93%、平均绝对百分比误差分别降低22.89%和2.66%、单次运行时间分别降低31.6%和30.5%、决定系数分别升高0.98%和0.15%,说明SFO-BPNN模型无论从精度还是效率方面都更具优势。研究结果可为水-能源-粮食耦合系统安全特征测度分析提供新模型,同时可为有效防控和降低区域安全风险提供参考。 展开更多
关键词 -能源-粮食耦合系统 安全特征 旗鱼优化算法 BP神经网络
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
15
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:7
16
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
在线阅读 下载PDF
基于BP神经网络和遗传算法的设备故障诊断与健康管理模型研究 被引量:6
17
作者 和征 张同静 杨小红 《制造技术与机床》 北大核心 2024年第11期9-15,共7页
针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了... 针对目前设备管理存在的故障处理周期长、维护保养任务重、维修成本高的现状,构建了设备故障诊断与健康管理架构,包括设备层、感知层、数据处理及存储层、数据分析层和应用层。其中,在数据分析层,综合采用BP神经网络和遗传算法,建立了设备故障诊断与健康管理模型。最后,以机电设备振动数据为例,进行设备故障诊断模型的预测结果分析,验证了该模型的可行性。研究结果表明,该模型能提高设备故障诊断正确率,具有较好的故障诊断效果;设备预测健康状态与实际健康状态的变化趋势基本保持一致,重合率大于90%。该成果可为制造企业的设备故障诊断与健康管理提供相关策略,有效排除故障问题,降低管理成本。 展开更多
关键词 设备故障诊断 设备健康管理 BP神经网络 遗传算法
在线阅读 下载PDF
基于GA-BP神经网络的EISCAP传感器数据预测算法研究
18
作者 冯臻夫 张婉青 陈东 《仪表技术与传感器》 北大核心 2025年第7期121-126,共6页
针对传统测量拟合方法速度慢、稳定性差、耗时较长及精度较低等问题,文中将遗传算法和BP神经网络相结合,利用遗传算法优化BP神经网络的权值及阈值寻找最优解,在此基础上提出了一种基于GA-BP神经网络的EISCAP传感器数据预测方法。在室温... 针对传统测量拟合方法速度慢、稳定性差、耗时较长及精度较低等问题,文中将遗传算法和BP神经网络相结合,利用遗传算法优化BP神经网络的权值及阈值寻找最优解,在此基础上提出了一种基于GA-BP神经网络的EISCAP传感器数据预测方法。在室温条件下EISCAP传感器测量不同pH值的缓冲溶液,对实验样本数据进行归一化处理,以从实验样本数据中提取的偏置电压大小作为输入特征量,以EISCAP精确检测出的幅值大小作为输出特征量,构建GA-BP神经网络模型,对实验样本数据进行训练和预测。结果表明:与传统的拟合方法相比,GA-BP神经网络算法预测误差较小,平均绝对误差MAE降低了0.61%,均方根误差RMSE降低了0.05%~0.72%。GA-BP神经网络模型预测效果好,在同等采样数据量条件下,较传统的插值法大大提升了测量效率和测量精度,具有良好的适用性和灵活性。 展开更多
关键词 BP神经网络 遗传算法 EISCAP传感器 幅值检测 预测模型
在线阅读 下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别 被引量:2
19
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络
在线阅读 下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测 被引量:1
20
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 BP神经网络 GABP模型 空间分布预测 重金属含量
在线阅读 下载PDF
上一页 1 2 196 下一页 到第
使用帮助 返回顶部