期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
基于遗传算法的回归型支持向量机参数选择法 被引量:42
1
作者 李良敏 温广瑞 王生昌 《计算机工程与应用》 CSCD 北大核心 2008年第7期23-26,共4页
研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题... 研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题,模拟实验证明,该方法克服了传统参数选择方法存在的缺点,提高了支持向量机的预报精度。 展开更多
关键词 回归支持向量 遗传算法 参数选择
在线阅读 下载PDF
基于遗传算法的支持向量回归机参数选取 被引量:39
2
作者 杜京义 侯媛彬 《系统工程与电子技术》 EI CSCD 北大核心 2006年第9期1430-1433,共4页
针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为... 针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为了减少所选参数对训练样本的依赖性,借鉴交叉验证的方法,把训练集分为估计子集,用来选择模型;确认子集选择参数,以推广能力最好的一组参数作为最终参数。将所提出的方法应用于受噪声影响的标准函数,实验结果表明,由该方法所得参数确定的SVR具有较优的预测性能。 展开更多
关键词 遗传算法 支持向量回归 参数选择 交叉验证
在线阅读 下载PDF
一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法 被引量:4
3
作者 胡友涛 胡昌华 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1216-1220,1225,共6页
针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品... 针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. 展开更多
关键词 实时寿命预测 性能退化 小波支持向量回归 遗传算法
在线阅读 下载PDF
基于遗传算法-支持向量机的我国创新型城市评价 被引量:5
4
作者 陈莉 李运超 《中国科技论坛》 CSSCI 北大核心 2014年第11期126-131,共6页
本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位... 本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位次与真实位次进行了比较分析,验证检验结果的准确性。最后,分析了创新型城市评价结果并提出建议。 展开更多
关键词 遗传算法-支持向量 创新型城市 评价
在线阅读 下载PDF
应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测 被引量:8
5
作者 谷有众 高卫东 +2 位作者 卢雨正 刘建立 杨瑞华 《纺织学报》 EI CAS CSCD 北大核心 2016年第7期142-148,共7页
为探究熟条质量对喷气涡流纺纱线质量的影响,建立了遗传算法优化的支持向量回归机预测模型。模型的输入端参数为熟条的4项指标(条干CV值、回潮率、定量和定量不匀率),分别对19.7 tex和11.8 tex的涤纶/粘胶(67/33)喷气涡流纺纱线进行强... 为探究熟条质量对喷气涡流纺纱线质量的影响,建立了遗传算法优化的支持向量回归机预测模型。模型的输入端参数为熟条的4项指标(条干CV值、回潮率、定量和定量不匀率),分别对19.7 tex和11.8 tex的涤纶/粘胶(67/33)喷气涡流纺纱线进行强力和条干CV值预测试验,同时建立了BP神经网络模型作对比试验。2种模型预测对比分析的结果表明:遗传算法优化的支持向量回归机模型的稳定性和精度要比BP神经网络模型高得多,更适用于描述熟条质量与喷气涡流纺纱线质量(单纱强力和纱线条干CV值)间的非线性关系。 展开更多
关键词 遗传算法 支持向量回归 喷气涡流纺 纱线强力 条干CV值
在线阅读 下载PDF
基于遗传算法-支持向量机的兔肝VX2肿瘤光谱鉴别 被引量:7
6
作者 刘晨阳 许黄蓉 +3 位作者 段峰 王泰升 卢振武 鱼卫星 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第10期3123-3128,共6页
兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正... 兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正常肝组织和肝VX2肿瘤组织)和四分类(未出血活体正常肝组织、未出血活体VX2肿瘤组织、出血离体正常肝组织和出血离体肝VX2肿瘤组织)。根据其光谱反射曲线的特征,选择了400~1800 nm区间的数据为特征变量。为进一步提高分类准确率,分别采用5折交叉验证和遗传算法对支持向量机的核函数参数g和惩罚因子c进行了优化。其中5折交叉验证优化参数和分类结果为:二分类优化的惩罚参数c为4,核函数参数g为0.1250,其校正集和预测集的准确率都达到了100%;四分类中优化出的参数c为8,g为0.1211,其校正集和预测集的准确率分别达到了99.2424%和93.333%。遗传算法优化参数和结果为:二分类中优化的参数c为0.8456,g为0.0625,其校正集和预测集的准确率同样都达到了100%;四分类中优化的参数c为5.5307,g为0.0685,其校正集和预测集的准确率分别达到了99.2424%和100%。结果显示两种优化方法都取得了很好的效果,遗传算法优化参数对四分类的分类更为精确。为进一步提升算法速度,采用间隔选取变量的方法来不断减少特征变量,最终每隔100 nm谱段选择一个变量,共选择14个谱段作为特征变量。采用遗传算法优化支持向量机参数并对其分类进行了研究,结果表明:二分类和四分类的校正集和预测集结果准确率均为99.2424%,而且运行时间分别为11.4和20.0 s,与选择全波段的运行时间:340.3和491.0 s相比,说明多光谱技术可以进行肝VX2肿瘤组织和正常肝组织的鉴别,且分类准确率可达99%以上,而且运行时间缩短了很多。为未来多光谱技术在未来临床肿瘤诊断中实现肿瘤组织的快速实时在线检测和分类奠定了基础,显示出巨大的应用潜力。 展开更多
关键词 兔肝VX2肿瘤 可见-近红外光谱 遗传算法 支持向量
在线阅读 下载PDF
基于遗传算法优化参数的支持向量机燃煤发热量预测 被引量:27
7
作者 江文豪 韦红旗 +1 位作者 屈天章 朱锋 《热力发电》 CAS 北大核心 2011年第3期14-19,共6页
利用支持向量回归机(SVR)和遗传算法(GA)对煤的低位发热量建模,采用遗传算法对支持向量机预测模型的各项参数进行寻优,为减少所选参数对训练样本的依赖性,引入交叉验证的思想,以推广能力最好的一组参数作为最终参数。将优化参数代入SVR... 利用支持向量回归机(SVR)和遗传算法(GA)对煤的低位发热量建模,采用遗传算法对支持向量机预测模型的各项参数进行寻优,为减少所选参数对训练样本的依赖性,引入交叉验证的思想,以推广能力最好的一组参数作为最终参数。将优化参数代入SVR模型,得到基于遗传算法的支持向量回归机(GA-SVR)模型。通过对电厂入炉煤的试验数据进行分析,并且与常规SVR模型和BP神经网络模型(BP-ANN)进行对比,以验证该模型的可靠性和精确性。结果表明,该方法可准确地预测燃煤发热量。 展开更多
关键词 支持向量回归 遗传算法 神经网络 低位发热量 预测
在线阅读 下载PDF
基于遗传算法优化支持向量机的大坝安全性态预测模型 被引量:36
8
作者 谷艳昌 吴云星 +1 位作者 黄海兵 庞琼 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期419-425,共7页
为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输... 为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输出,采用训练样本对支持向量机进行训练,并使用训练好的模型预测效应量。根据概率统计理论中的3σ准则,建立大坝安全性态三级指标和判别准则。以某大型水库大坝为例,建立该大坝的GA-SVM模型,并与SVM模型和逐步回归模型进行了对比验证。预测结果表明,GA-SVM模型渗压预测值与实测值最接近,预测精度较SVM模型和逐步回归模型提高了约3倍。 展开更多
关键词 水库大坝 安全性态 预测模型 遗传算法 支持向量 k-折交叉验证 小波去躁 逐步回归
在线阅读 下载PDF
基于遗传算法的支持向量机预测有机物自燃点的研究 被引量:12
9
作者 时静洁 陈利平 +3 位作者 石宁 徐伟 杨惠 陈网桦 《中国安全科学学报》 CAS CSCD 北大核心 2011年第7期125-129,共5页
根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型... 根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型研究有机物的自燃点与其分子结构间的关系。通过分析,发现造成模型预测效果不佳的原因是试验数据本身存在问题。通过对2个模型的比较,结果为GA-SVM模型明显优于GA-MLR模型,说明自燃点与其分子结构间具有很强的非线性关系。 展开更多
关键词 自燃点(AIT) 遗传算法(GA) 多元线性回归(MLR) 支持向量(SVM) 定量构效关系(QSPR)
在线阅读 下载PDF
ε-支持向量回归机算法及其应用 被引量:9
10
作者 冼广铭 曾碧卿 《计算机工程与应用》 CSCD 北大核心 2008年第17期40-42,共3页
针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点... 针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点。分析了ε-支持向量回归机理论算法及其在图像去噪中的应用,使用ε-支持向量回归机对图像进行滤波并且与最小值滤波、均值滤波和维纳滤波等常用的滤波方法相比较,还比较了SVM各种核函数对不同噪声的滤波效果和分析了不同阶数的Multi-nomial核的滤波效果。实验结果表明了ε-支持向量回归机能够有效地去除噪声,不但信噪比较高而且比较清晰,同时具有良好的稀疏性。 展开更多
关键词 ε-支持向量回归 ε不敏感损失函数 图像去噪
在线阅读 下载PDF
基于遗传算法和最小二乘支持向量机的织物剪切性能预测 被引量:2
11
作者 卢桂馥 王勇 +1 位作者 窦易文 Gui-fu Yi-wen 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神... 提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力. Abstract: A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method. 展开更多
关键词 基于遗传算法 最小二乘支持向量 织物 剪切 性能预测模型 SUPPORT VECTOR MACHINES sampling data SUPPORT VECTOR MACHINES generalization ability simulation results linear regression genetic algorithm BP neural network prediction model 线性回归方法 LS-SVM least square 归一化处理 new method 预测结果
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
12
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
基于遗传-支持向量回归的煤层底板突水量预测研究 被引量:26
13
作者 曹庆奎 赵斐 《煤炭学报》 EI CAS CSCD 北大核心 2011年第12期2097-2101,共5页
针对煤层底板突水问题的小样本、非线性特点,采用支持向量回归算法对突水量进行预测,避免了定性分析的局限性。利用遗传算法全局搜索能力的优势,提出了基于遗传算法的支持向量回归参数寻优方法,并建立煤层底板突水量预测的遗传-支持向... 针对煤层底板突水问题的小样本、非线性特点,采用支持向量回归算法对突水量进行预测,避免了定性分析的局限性。利用遗传算法全局搜索能力的优势,提出了基于遗传算法的支持向量回归参数寻优方法,并建立煤层底板突水量预测的遗传-支持向量回归模型。该模型首先通过遗传算法对训练样本的学习,得到支持向量回归机的最优参数值,然后运用遗传-支持向量回归模型对测试样本进行突水量预测。测试结果表明:与神经网络,传统支持向量回归机的预测值相比,煤层底板突水量预测的遗传-支持向量回归模型精度高,具有较强的泛化能力。 展开更多
关键词 煤层底板 突水量预测 遗传算法 支持向量 支持向量回归
在线阅读 下载PDF
自适应遗传优化的最小二乘支持向量回归机在煤粉着火温度建模中的应用 被引量:3
14
作者 韦红旗 牛中敏 +1 位作者 江文豪 叶亚兰 《燃烧科学与技术》 EI CAS CSCD 北大核心 2011年第3期191-195,共5页
针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠... 针对煤粉着火温度与煤质指标间的非线性关系,提出了基于自适应遗传算法和最小二乘支持向量回归机的煤粉着火温度预测模型.通过对实验数据进行预测评判,并与常规的最小二乘支持向量回归机模型和BP神经网络模型相比较,以验证此模型的可靠性和精确性.结果表明,该模型是合理可行的,该模型比传统计算模型具有更好的泛化能力,能更准确地预测煤粉着火温度.采用该模型对输入变量的权重进行分析,得到的结果与机理分析一致,为解决此类问题提供了新途径. 展开更多
关键词 最小二乘支持向量回归 自适应遗传算法 煤粉 着火温度预测
在线阅读 下载PDF
ε-不敏感的光滑支持向量回归机的收敛性 被引量:1
15
作者 陈勇 徐建敏 《计算机工程》 CAS CSCD 北大核心 2010年第15期185-187,190,共4页
ε-不敏感的光滑支持向量回归机采用快速的迭代方法进行求解,使回归性能及效率得到了提高,但并没有考虑该回归机的收敛性。针对该问题,采用集合论等方法,通过相关的理论推导,证明该光滑支持向量回归机对任意给定的惩罚参数都是全局收敛... ε-不敏感的光滑支持向量回归机采用快速的迭代方法进行求解,使回归性能及效率得到了提高,但并没有考虑该回归机的收敛性。针对该问题,采用集合论等方法,通过相关的理论推导,证明该光滑支持向量回归机对任意给定的惩罚参数都是全局收敛的,并给出它的收敛上界,为该光滑支持向量机提供了基本的理论支持。 展开更多
关键词 Ε-不敏感损失函数 回归 支持向量 光滑 收敛
在线阅读 下载PDF
基于ε-支持向量回归机的小菜蛾预警模型 被引量:1
16
作者 宋婷婷 崔英玲 +1 位作者 冯德军 杨敬锋 《安徽农业科学》 CAS 北大核心 2010年第23期12528-12529,共2页
基于ε-支持向量回归机算法建立了小菜蛾在多发季节的预测模型,通过对广东省蔬菜小菜蛾试验数据进行分析,结果表明,在选择惩罚因子c为43、核函数参数κ为0.2的情况下,ε-支持向量回归机预警模型取得了较好的预测结果。
关键词 预警 小菜蛾 ε-支持向量回归
在线阅读 下载PDF
考虑梯度信息的ε-支持向量回归机 被引量:4
17
作者 周晓剑 《自动化学报》 EI CSCD 北大核心 2014年第12期2908-2915,共8页
传统的ε-支持向量回归机(ε-support vector regression,ε-SVR)只是根据样本点处的响应值来构建模型,并没考虑样本点处的梯度信息.如果样本点处的梯度信息容易获得或者获得的成本并不高,那就应该将梯度信息应用到模型的构建中.已有的... 传统的ε-支持向量回归机(ε-support vector regression,ε-SVR)只是根据样本点处的响应值来构建模型,并没考虑样本点处的梯度信息.如果样本点处的梯度信息容易获得或者获得的成本并不高,那就应该将梯度信息应用到模型的构建中.已有的基于梯度信息的ε-支持向量回归机模型的构建是从泰勒展开的角度着手,简单地将梯度信息插入到泰勒展开式中;本研究另辟蹊径,并没有去估计样本点邻域内的函数值,而是将梯度信息作为第二类变量融入到核矩阵中直接构建优化模型,使模型的构建更为简捷直观,并据此得到一种新的基于梯度信息的ε-支持向量回归机(Gradient-enhancedε-support vector regression,GESVR)模型.所提模型通过了常用分析函数及精算领域中的生命表数据的验证,实验表明,与传统的ε-SVR相比,考虑梯度信息的GESVR模型显著地提高了其预测精度. 展开更多
关键词 ε-支持向量回归 元模型 梯度信息 计算实验设计 仿真优化
在线阅读 下载PDF
一种求ε-不敏感支持向量回归机光滑函数的新方法
18
作者 陈勇 熊金志 《计算机工程与科学》 CSCD 北大核心 2010年第8期108-111,共4页
2008年熊金志等人提出了一种求光滑函数的方法,就理论而言可求得ε-不敏感支持向量回归机的无穷个光滑函数,但该方法每次都需要对光滑函数的导数进行积分,推导过程很繁琐。为克服这个缺点,本文利用支持向量分类机的光滑函数,通过相关的... 2008年熊金志等人提出了一种求光滑函数的方法,就理论而言可求得ε-不敏感支持向量回归机的无穷个光滑函数,但该方法每次都需要对光滑函数的导数进行积分,推导过程很繁琐。为克服这个缺点,本文利用支持向量分类机的光滑函数,通过相关的理论推导,用新的递推方式来表示支持向量回归机的光滑函数,简化了原方法的推导过程,得到了一种求支持向量回归机光滑函数的新方法。通过用原方法和新方法分别求光滑函数的两个算例,表明了新方法的有效性。还用新方法导出了光滑函数的一个重要性质,即光滑函数关于光滑阶数是单调减函数,为进一步研究光滑支持向量回归机提供了理论依据。 展开更多
关键词 支持向量 光滑函数 回归 Ε-不敏感损失函数
在线阅读 下载PDF
非对称ν-无核二次曲面支持向量回归机 被引量:2
19
作者 马梦萍 杨志霞 《计算机工程与应用》 CSCD 北大核心 2021年第7期70-77,共8页
针对回归问题提出了非对称ν-无核二次曲面支持向量回归机。通过引入Pinball损失函数,使得位于ε带上方和下方的样本点具有不同的惩罚,从而得到更优的回归函数。进一步从理论上分析了参数p和ν控制ε带上方和下方错误样本点数目的上界。... 针对回归问题提出了非对称ν-无核二次曲面支持向量回归机。通过引入Pinball损失函数,使得位于ε带上方和下方的样本点具有不同的惩罚,从而得到更优的回归函数。进一步从理论上分析了参数p和ν控制ε带上方和下方错误样本点数目的上界。当p=0.5时,该方法就退化成了对称ν-无核二次曲面支持向量回归机,此时也证明了参数ν可控制支持向量的个数。事实上,该算法不需要使用核函数,从而避免了核参数的选择且不损失决策函数的可解释性。数值实验部分展示了该算法具有更好的拟合性能且耗时较少,也分析了参数p不会增加计算成本。 展开更多
关键词 ν-支持向量回归 无核二次曲面支持向量回归 Pinball损失
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
20
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 器学习 粒子群优化的支持向量回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部