期刊文献+
共找到1,044篇文章
< 1 2 53 >
每页显示 20 50 100
基于遗传算法-支持向量机的我国创新型城市评价 被引量:5
1
作者 陈莉 李运超 《中国科技论坛》 CSSCI 北大核心 2014年第11期126-131,共6页
本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位... 本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位次与真实位次进行了比较分析,验证检验结果的准确性。最后,分析了创新型城市评价结果并提出建议。 展开更多
关键词 遗传算法-支持向量机 创新型城市 评价
在线阅读 下载PDF
基于遗传算法-支持向量机模型在热带气旋强度预报中的应用 被引量:5
2
作者 顾锦荣 刘华强 +1 位作者 刘向陪 吕庆平 《海洋预报》 2011年第3期8-14,共7页
利用遗传算法对支持向量机(SVM)模型参数进行寻优,找到最优参数组合后代入SVM模型中,得到基于遗传算法的支持向量机模型(GA-SVM),利用此模型对热带气旋强度进行预报实验。该模型对热带气旋强度12 h、24 h和48 h的预报平均绝对误差分别为... 利用遗传算法对支持向量机(SVM)模型参数进行寻优,找到最优参数组合后代入SVM模型中,得到基于遗传算法的支持向量机模型(GA-SVM),利用此模型对热带气旋强度进行预报实验。该模型对热带气旋强度12 h、24 h和48 h的预报平均绝对误差分别为3.01 m/s、4.46 m/s和6.57 m/s;比最小二乘回归法的预报精度分别提高了12%、11%、14%。 展开更多
关键词 支持向量 遗传算法 热带气旋 强度预报
在线阅读 下载PDF
基于遗传算法-支持向量机的兔肝VX2肿瘤光谱鉴别 被引量:7
3
作者 刘晨阳 许黄蓉 +3 位作者 段峰 王泰升 卢振武 鱼卫星 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第10期3123-3128,共6页
兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正... 兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正常肝组织和肝VX2肿瘤组织)和四分类(未出血活体正常肝组织、未出血活体VX2肿瘤组织、出血离体正常肝组织和出血离体肝VX2肿瘤组织)。根据其光谱反射曲线的特征,选择了400~1800 nm区间的数据为特征变量。为进一步提高分类准确率,分别采用5折交叉验证和遗传算法对支持向量机的核函数参数g和惩罚因子c进行了优化。其中5折交叉验证优化参数和分类结果为:二分类优化的惩罚参数c为4,核函数参数g为0.1250,其校正集和预测集的准确率都达到了100%;四分类中优化出的参数c为8,g为0.1211,其校正集和预测集的准确率分别达到了99.2424%和93.333%。遗传算法优化参数和结果为:二分类中优化的参数c为0.8456,g为0.0625,其校正集和预测集的准确率同样都达到了100%;四分类中优化的参数c为5.5307,g为0.0685,其校正集和预测集的准确率分别达到了99.2424%和100%。结果显示两种优化方法都取得了很好的效果,遗传算法优化参数对四分类的分类更为精确。为进一步提升算法速度,采用间隔选取变量的方法来不断减少特征变量,最终每隔100 nm谱段选择一个变量,共选择14个谱段作为特征变量。采用遗传算法优化支持向量机参数并对其分类进行了研究,结果表明:二分类和四分类的校正集和预测集结果准确率均为99.2424%,而且运行时间分别为11.4和20.0 s,与选择全波段的运行时间:340.3和491.0 s相比,说明多光谱技术可以进行肝VX2肿瘤组织和正常肝组织的鉴别,且分类准确率可达99%以上,而且运行时间缩短了很多。为未来多光谱技术在未来临床肿瘤诊断中实现肿瘤组织的快速实时在线检测和分类奠定了基础,显示出巨大的应用潜力。 展开更多
关键词 兔肝VX2肿瘤 可见-近红外光谱 遗传算法 支持向量
在线阅读 下载PDF
基于遗传算法-支持向量机的滑坡渗透系数反演 被引量:8
4
作者 胡鹏 文章 +1 位作者 胡新丽 张玉明 《水文地质工程地质》 CAS CSCD 北大核心 2021年第4期160-168,共9页
求解库岸边坡岩土体的渗透系数是研究滑坡渗流场及多场演化的基础,一般通过原位试验和室内试验求得,但试验成本较高且试验位置具有一定的随机性。本文以三峡库区马家沟滑坡为例,提出一种利用地下水位动态观测资料反演滑坡岩土层渗透系... 求解库岸边坡岩土体的渗透系数是研究滑坡渗流场及多场演化的基础,一般通过原位试验和室内试验求得,但试验成本较高且试验位置具有一定的随机性。本文以三峡库区马家沟滑坡为例,提出一种利用地下水位动态观测资料反演滑坡岩土层渗透系数的方法。具体步骤为:(1)依据滑坡的勘察资料和水位观测数据,构建滑坡数值模型;(2)利用SPSS生成不同渗透系数正交试验组合,并将渗透系数代入数值模型中计算监测井的水位,得到不同渗透系数及其对应的模拟水位数据;(3)应用遗传算法优化的支持向量机构建坡体模拟水位与渗透系数的非线性映射关系,再通过代入实际动态监测水位值求得滑坡岩土层的渗透系数;(4)将求得的渗透系数代入数值模型,用计算的模拟水位与实际观测水位进行对比验证。研究结果表明:遗传算法优化的支持向量机具有良好的学习预测效果,能准确预测渗透系数与水位的关系。该反演方法具有高效、准确的优点,反演结果的精度满足实际应用需要。 展开更多
关键词 马家沟滑坡 支持向量 遗传算法 数值模拟 渗透系数 反演
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
5
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
基于支持向量机的钢-混结合段疲劳性能研究
6
作者 王海波 王鸿燊 王文轩 《中南大学学报(自然科学版)》 北大核心 2025年第5期1874-1885,共12页
为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规... 为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规定预测钢-混结合段的疲劳性能。另外,选择支持向量机对多参数下的钢-混结合段疲劳性能进行评估。采用交叉验证等方法,调优支持向量机的核函数系数G和正则化参数C,以确保模型的最佳性能。研究结果表明:疲劳寿命预测结果准确率达98.78%,该方法为钢-混结合段的疲劳性能研究提供了一种新的、可靠的分析方法,可为工程实际应用提供参考。 展开更多
关键词 -混结合段 疲劳寿命 支持向量 模型试验
在线阅读 下载PDF
增强支持向量机和遗传算法的WSN安全研究 被引量:3
7
作者 赵文灏 陈曦 《计算机应用与软件》 北大核心 2024年第2期300-304,327,共6页
针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能... 针对开放式WSN连接到互联网上的智能设备数量和多样性迅速增加而导致的入侵检测误报和入侵检测准确性等问题,提出一种基于增强型支持向量机(Enhanced Support Vector Machine,ESVM)分类和遗传算法(Genetic Algorithm,GA)特征选择的智能轻量级物联网入侵检测算法。该算法进行预处理以将入侵数据集的复杂流量转换为SVM的可读格式,采用交叉和变异算子智能选择信息量最大的流量特征以降低无线网络流量的维数,使用ESVM算法执行分类以更有效地识别入侵攻击检测。实现结果表明,该算法在选择最优流量和提高检测精度方面均有明显改善。 展开更多
关键词 增强型支持向量 遗传算法 物联网 轻量级入侵检测系统
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
8
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量 遗传算法
在线阅读 下载PDF
基于遗传算法和支持向量机的XSS攻击检测方法 被引量:3
9
作者 马征 陈学斌 +1 位作者 张国鹏 翟冉 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第6期686-693,共8页
针对现有基于过滤器、动态分析、静态分析等的解决方案在检测未知XSS攻击方面效果不佳的问题,利用机器学习方法可高效检测出未知XSS攻击的特点,提出一种基于遗传算法和支持向量机的XSS攻击检测模型.通过模糊测试生成XSS攻击预样本,利用... 针对现有基于过滤器、动态分析、静态分析等的解决方案在检测未知XSS攻击方面效果不佳的问题,利用机器学习方法可高效检测出未知XSS攻击的特点,提出一种基于遗传算法和支持向量机的XSS攻击检测模型.通过模糊测试生成XSS攻击预样本,利用遗传算法搜索特征空间,迭代生成最优测试用例,从而扩充数据集、丰富XSS攻击向量库.给出了基于遗传算法和支持向量机的攻击检测模型,确定了XSS测试用例编码规则.进行了适应度函数设计,完成了选择算子、交叉算子、变异算子的设计.从准确率、召回率、误报率和F_(1)值来评价分类器的检测效果,结果表明:该模型准确率达到了99.5%;对比其他检测方法,该检测模型具有更好的检测效果,并且召回率和误报率也有明显改善. 展开更多
关键词 跨站脚本攻击 模糊测试 遗传算法 支持向量 特征向量
在线阅读 下载PDF
基于遗传算法优化支持向量机的船舰目标识别分类 被引量:1
10
作者 杨永平 《舰船科学技术》 北大核心 2024年第4期174-178,共5页
为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算... 为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算法,优化支持向量机的惩罚因子与核参数;在参数优化后的支持向量机内,输入舰船目标特征矩样本,输出舰船目标识别分类结果。实验证明,该方法可有效提取舰船目标特征矩;经过参数优化后的支持向量机,可有效降低计算复杂度,加快检测目标识别分类效率,具备较优的舰船目标识别分类性能。该方法均可精准识别分类舰船目标。 展开更多
关键词 遗传算法 支持向量 舰船目标 识别分类 HU矩 特征描述子
在线阅读 下载PDF
玉米籽粒的特征选择算法--基于支持向量机与遗传算法 被引量:7
11
作者 程洪 李江涛 +2 位作者 史智兴 尹辉娟 马丽 《农机化研究》 北大核心 2009年第2期30-33,共4页
在基于数字图像的玉米品种自动识别的研究中,寻找对识别贡献大的新特征项,对玉米品种识别率的提高具有十分重大的意义。把遗传算法和支持向量机算法相结合,设计了具体的基于支持向量机和遗传算法的玉米籽粒特征选择算法,利用这种算法优... 在基于数字图像的玉米品种自动识别的研究中,寻找对识别贡献大的新特征项,对玉米品种识别率的提高具有十分重大的意义。把遗传算法和支持向量机算法相结合,设计了具体的基于支持向量机和遗传算法的玉米籽粒特征选择算法,利用这种算法优选提取出的玉米籽粒特征,从玉米籽粒的胚部和冠部的颜色特征与形状特征中找出了对玉米品种识别贡献较大的新特征。 展开更多
关键词 玉米种子 特征选择 自动识别 遗传算法 支持向量
在线阅读 下载PDF
基于遗传算法优化的支持向量机(SVM-GA)低阶煤制氢产量预测模型 被引量:3
12
作者 方向 丁兆军 舒新前 《煤炭学报》 EI CAS CSCD 北大核心 2010年第S1期205-209,共5页
介绍了遗传算法(GA)和支持向量机(SVM)的基本理论,用遗传算法对支持向量机的结构和参数进行了优化,将该方法用于低阶煤制氢的研究,获得了影响低阶煤制氢产量的主要煤质指标,建立了SVM-GA预测模型。结合34个校验样本的氢产量和相对应的... 介绍了遗传算法(GA)和支持向量机(SVM)的基本理论,用遗传算法对支持向量机的结构和参数进行了优化,将该方法用于低阶煤制氢的研究,获得了影响低阶煤制氢产量的主要煤质指标,建立了SVM-GA预测模型。结合34个校验样本的氢产量和相对应的影响因素,对模型的预测效果进行了验证。结果表明:预测值与试验值的平均相对误差为0.209%,误差的均方差为37.88,达到了较高的预测精度。 展开更多
关键词 遗传算法 支持向量 低阶煤制氢 预测模型
在线阅读 下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:7
13
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电 最小二乘支持向量 逆系统 改进遗传算法 解耦控制
在线阅读 下载PDF
T-S模型的遗传算法和支持向量机辨识 被引量:2
14
作者 丁学明 樊海军 《控制工程》 CSCD 北大核心 2009年第5期591-593,597,共4页
基于非线性系统的输入输出数据,辩识对象的T-S模型。提出基于遗传算法和最小二乘支持向量机的辨识方法,利用遗传算法聚类进行结构辨识,每个类代表一条规则,规则数等于类数量,类中心作为该规则的隶属度函数中心类数;同时考虑模型辨识精度... 基于非线性系统的输入输出数据,辩识对象的T-S模型。提出基于遗传算法和最小二乘支持向量机的辨识方法,利用遗传算法聚类进行结构辨识,每个类代表一条规则,规则数等于类数量,类中心作为该规则的隶属度函数中心类数;同时考虑模型辨识精度,实现全局优化;参数辨识采用基于结构风险最小化的最小二乘支持向量机方法,综合考虑模型复杂度和辨识误差。仿真结果证明了算法的有效性,辨识精度高,泛化能力强。 展开更多
关键词 T—S模型 结构辨识 参数辨识 遗传算法 最小二乘支持向量
在线阅读 下载PDF
基于支持向量机-遗传算法灰树花发酵模型的建立及优化 被引量:2
15
作者 徐利 周丽伟 +2 位作者 郭文强 张亚萍 陈彦 《食品科学》 EI CAS CSCD 北大核心 2016年第11期143-146,共4页
对食用药用真菌灰树花发酵进行建模,获得使目标发酵产物达到最大产量的培养条件。运用支持向量机(support vector machine,SVM)方法进行非线性拟合,并采用遗传算法预测优化培养基成分,结果表明其能够较好预测灰树花发酵过程。运用此方... 对食用药用真菌灰树花发酵进行建模,获得使目标发酵产物达到最大产量的培养条件。运用支持向量机(support vector machine,SVM)方法进行非线性拟合,并采用遗传算法预测优化培养基成分,结果表明其能够较好预测灰树花发酵过程。运用此方法可在灰树花发酵生产过程中根据所需产物控制发酵条件与时间,具有较高指导意义。 展开更多
关键词 支持向量 遗传算法 发酵模型 灰树花
在线阅读 下载PDF
基于遗传算法和支持向量机的低NO_x燃烧优化 被引量:68
16
作者 王春林 周昊 +2 位作者 李国能 凌忠钱 岑可法 《中国电机工程学报》 EI CSCD 北大核心 2007年第11期40-44,共5页
大型四角切圆电站锅炉NOx排放是造成环境污染的重要因素,也是电厂关心的重要问题。影响燃煤锅炉NOx排放量的因素众多而且复杂。对锅炉NOx排放特性进行建模预测,并结合优化算法实现燃烧优化是降低锅炉NOx排放的有效方法。文中应用支持向... 大型四角切圆电站锅炉NOx排放是造成环境污染的重要因素,也是电厂关心的重要问题。影响燃煤锅炉NOx排放量的因素众多而且复杂。对锅炉NOx排放特性进行建模预测,并结合优化算法实现燃烧优化是降低锅炉NOx排放的有效方法。文中应用支持向量机算法建立了大型四角切圆燃烧锅炉NOx排放特性模型,接合遗传算法,利用NOx排放的热态实炉试验数据对模型进行了校验,对锅炉运行参数进行了优化。结果表明,通过遗传算法的寻优,NOx排放量有比较明显的降低。支持向量机与遗传算法相结合与其它方法相比具有泛化能力好,计算速度快等优点,是锅炉NOx排放控制的有效工具。 展开更多
关键词 锅炉 燃烧 NOx 支持向量 遗传算法
在线阅读 下载PDF
基于支持向量机与遗传算法的灰熔点预测 被引量:42
17
作者 王春林 周昊 +2 位作者 李国能 邱坤赞 岑可法 《中国电机工程学报》 EI CSCD 北大核心 2007年第8期11-15,共5页
为了提高估算煤灰熔点的精度,文中采用支持向量机算法对求解灰熔点问题进行了建模,并利用遗传算法对支持向量机模型的参数进行了优化,获得了最优的模型参数。支持向量机模型将灰成分作为输入量,煤的灰熔点Tst作为输出量,用试验数据对模... 为了提高估算煤灰熔点的精度,文中采用支持向量机算法对求解灰熔点问题进行了建模,并利用遗传算法对支持向量机模型的参数进行了优化,获得了最优的模型参数。支持向量机模型将灰成分作为输入量,煤的灰熔点Tst作为输出量,用试验数据对模型进行了校验和参数的寻优,利用优化后的模型对单煤和混煤灰熔点进行了预测,并将预测结果与实验结果进行了对比,结果表明,优化后的支持向量机模型实现了对单煤和混煤灰熔点较精确的预测。支持向量机可用于小样本问题的学习,计算速度快,提高了实时处理与预测能力。 展开更多
关键词 灰熔点 支持向量 遗传算法 优化 预测
在线阅读 下载PDF
基于遗传算法优化参数的支持向量机短期负荷预测方法 被引量:135
18
作者 吴景龙 杨淑霞 刘承水 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期180-184,共5页
通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗... 通过研究参数选择和支持向量机预测能力的影响,建立利用遗传算法优化参数的支持向量机负荷预测系统。通过遗传算法对支持向量机(SVM)预测模型的各项参数进行寻优预处理,找到最优的参数取值,然后,代入支持向量机SVM预测模型中,得基于遗传算法的支持向量机(GA-SVM)模型,利用此模型对短期电力负荷进行预测研究。通过实例验证,选择河北某地区2005-03-02至2007-05-22每天各个时点的数据进行分析,并且选择SVM模型与BP(Back propagation)神经网络进行对比。研究结果表明:用GA-SVM算法得到的均方根相对误差仅为2.25%,比用SVM模型和BP神经网络所得的均方根相对误差比分别低0.58%和1.93%。所提出的测试方法克服了传统参数选择方法存在的缺点(如研究者往往凭经验和有限的实验给定一组参数,而不讨论参数制定的合理性),提高了支持向量机的预测精度。 展开更多
关键词 遗传算法 支持向量 参数优化 负荷预测
在线阅读 下载PDF
基于遗传算法最小二乘支持向量机的耕地变化预测 被引量:49
19
作者 张豪 罗亦泳 +1 位作者 张立亭 陈竹安 《农业工程学报》 EI CAS CSCD 北大核心 2009年第7期226-231,共6页
针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机... 针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机耕地变化预测模型精度。利用该模型对江苏无锡市1987-2000年期间耕地变化进行预测,并与多元回归、GM(1,1)、BP网络、支持向量机(SVM)耕地预测模型和实际调查耕地变化数据进行比较分析。预测精度评价结果证实,该方法耕地预测精度远高于多元回归、GM(1,1),BP网络模型,略高于SVM模型,但算法复杂度和计算效率远优于SVM预测模型,是一种有效的耕地变化预测方法。 展开更多
关键词 最小二乘支持向量 遗传算法 耕地预测 影响因子 精度分析
在线阅读 下载PDF
遗传算法优化的支持向量机湿地遥感分类——以洪河国家级自然保护区为例 被引量:40
20
作者 臧淑英 张策 +1 位作者 张丽娟 张玉红 《地理科学》 CSCD 北大核心 2012年第4期434-441,共8页
湿地遥感分类作为湿地管理、监测与评价的重要手段,受到了广泛的关注。遗传算法(GA)借鉴了生物进化规律进行启发式搜索寻优,支持向量机(SVM)是一种新型的空间数据挖掘方法,二者相结合可以发挥各自的优势,寻找到支持向量机的全局最优参数... 湿地遥感分类作为湿地管理、监测与评价的重要手段,受到了广泛的关注。遗传算法(GA)借鉴了生物进化规律进行启发式搜索寻优,支持向量机(SVM)是一种新型的空间数据挖掘方法,二者相结合可以发挥各自的优势,寻找到支持向量机的全局最优参数,从而较准确地对湿地进行遥感分类。以洪河自然保护区为例,采用遗传算法优化的支持向量机方法进行了湿地遥感分类研究。同格网搜索下的支持向量机湿地遥感分类及最大似然监督分类对比,结果表明,遗传算法优化较格网搜索方式总精度提高了7.29%,较最大似然监督分类提高了12.06%,方法改善了沼泽、草地与裸地三种地物间的区分,是湿地遥感分类的有效手段。 展开更多
关键词 湿地 遥感分类 遗传算法 支持向量 洪河自然保护区
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部