期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
基于遗传算法-v支持向量回归的船舶轨迹预测 被引量:1
1
作者 姜立超 尚晓兵 +2 位作者 金豹 张雯 张智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第10期2001-2006,共6页
为了提高船舶轨迹预测精度,避免船舶海上航行事故的发生,本文采用遗传算法对v-支持向量回归进行参数寻优,以此来分别构建关于经纬度的船舶轨迹预测模型。选取水上移动业务标识码为356772000的货船在2022年6月的船舶自动识别系统数据作... 为了提高船舶轨迹预测精度,避免船舶海上航行事故的发生,本文采用遗传算法对v-支持向量回归进行参数寻优,以此来分别构建关于经纬度的船舶轨迹预测模型。选取水上移动业务标识码为356772000的货船在2022年6月的船舶自动识别系统数据作为研究对象。将该模型的预测结果分别与粒子群优化算法和网格搜索算法优化的v-支持向量回归模型、遗传算法-支持向量回归模型进行比较。实验结果表明:遗传算法v-支持向量回归模型关于航迹经、纬度预测结果的均方误差、平均绝对百分比误差和平均绝对误差相比于其他模型最低,关于经度分别为4.29×10^(-7)(°)、4.50×10^(-4)和5.47×10^(-7)(°)2,关于纬度的分别为1.82×10^(-6)(°)、4.02×10^(-3)和1.08×10^(-3)(°)2。基于遗传算法-v支持向量回归模型的预测效果最好,预测误差波动最小。本文将遗传算法与v-支持向量回归相结合,为船舶轨迹预测模型的优化提供参考,也为海上智能交通提供思路。 展开更多
关键词 船舶轨迹预测 v-支持向量回归 遗传算法 水上移动业务标识码 船舶自动识别系统 交叉验证 智能交通 机器学习
在线阅读 下载PDF
基于遗传算法优化支持向量回归的电池SOH预测
2
作者 何山 郝雄博 +2 位作者 赵宇明 姜颖 李昊巍 《汽车技术》 CSCD 北大核心 2024年第5期31-36,共6页
针对实车运行过程中电池当前可用容量难获取、电池健康状态评估不准确的问题,提出利用车辆的停车充电片段数据,通过箱型图及卡尔曼滤波算法对安时积分法计算所得的电池容量进行修正,构建支持向量回归模型用于电池衰减预测,通过皮尔森相... 针对实车运行过程中电池当前可用容量难获取、电池健康状态评估不准确的问题,提出利用车辆的停车充电片段数据,通过箱型图及卡尔曼滤波算法对安时积分法计算所得的电池容量进行修正,构建支持向量回归模型用于电池衰减预测,通过皮尔森相关性分析确定有效的模型输入参数,结合遗传算法优化模型参数。结果表明:优化后模型的拟合优度可达88%,相较于优化前提高了12%,可以实现电池健康状态的准确预测。 展开更多
关键词 实车数据 动力电池 容量衰减 卡尔曼滤波 遗传算法 支持向量回归
在线阅读 下载PDF
基于遗传算法的回归型支持向量机参数选择法 被引量:42
3
作者 李良敏 温广瑞 王生昌 《计算机工程与应用》 CSCD 北大核心 2008年第7期23-26,共4页
研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题... 研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题,模拟实验证明,该方法克服了传统参数选择方法存在的缺点,提高了支持向量机的预报精度。 展开更多
关键词 回归支持向量 遗传算法 参数选择
在线阅读 下载PDF
基于遗传算法的支持向量回归机参数选取 被引量:39
4
作者 杜京义 侯媛彬 《系统工程与电子技术》 EI CSCD 北大核心 2006年第9期1430-1433,共4页
针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为... 针对支持向量回归机(support vector regression,SVR)的参数选择问题,提出了基于遗传算法的SVR参数自动确定方法。分析了SVR各参数对其性能的影响,根据已有的样本集确定遗传算法的搜索区间,然后在该区间内对搜索的参数进行最优选取。为了减少所选参数对训练样本的依赖性,借鉴交叉验证的方法,把训练集分为估计子集,用来选择模型;确认子集选择参数,以推广能力最好的一组参数作为最终参数。将所提出的方法应用于受噪声影响的标准函数,实验结果表明,由该方法所得参数确定的SVR具有较优的预测性能。 展开更多
关键词 遗传算法 支持向量回归 参数选择 交叉验证
在线阅读 下载PDF
基于遗传算法优化支持向量回归机的网格负载预测模型 被引量:6
5
作者 唐阔 胡国圣 +1 位作者 车喜龙 胡亮 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第2期251-255,共5页
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预... 提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能. 展开更多
关键词 网格负载预测 支持向量回归 遗传算法
在线阅读 下载PDF
一种基于遗传算法优化小波支持向量回归机的实时寿命预测方法 被引量:4
6
作者 胡友涛 胡昌华 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1216-1220,1225,共6页
针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品... 针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. 展开更多
关键词 实时寿命预测 性能退化 小波支持向量回归 遗传算法
在线阅读 下载PDF
基于遗传算法-支持向量机的我国创新型城市评价 被引量:5
7
作者 陈莉 李运超 《中国科技论坛》 CSSCI 北大核心 2014年第11期126-131,共6页
本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位... 本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位次与真实位次进行了比较分析,验证检验结果的准确性。最后,分析了创新型城市评价结果并提出建议。 展开更多
关键词 遗传算法-支持向量 创新型城市 评价
在线阅读 下载PDF
基于智能遗传算法与支持向量回归的人口预测 被引量:4
8
作者 戴宏亮 《计算机工程与应用》 CSCD 北大核心 2008年第21期9-11,40,共4页
要建立一个有效的支持向量回归(SVR)模型,支持向量回归的3个参数C,!,"必须预先设定。提出一种新型的遗传算法——智能遗传算法(IGA)对支持向量回归进行参数调节,以达到寻找最优参数的目的,然后和支持向量回归结合得到一种新的IGASV... 要建立一个有效的支持向量回归(SVR)模型,支持向量回归的3个参数C,!,"必须预先设定。提出一种新型的遗传算法——智能遗传算法(IGA)对支持向量回归进行参数调节,以达到寻找最优参数的目的,然后和支持向量回归结合得到一种新的IGASVR模型,并应用于城市人口预测。最后,将提出的方法与标准SVR模型和BP神经网络模型进行比较,所得结果表明,该模型训练速度快,并且有较高预测精度,是一种有效的人口预测方法。 展开更多
关键词 支持向量回归 智能遗传算法 人口 预测
在线阅读 下载PDF
应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测 被引量:8
9
作者 谷有众 高卫东 +2 位作者 卢雨正 刘建立 杨瑞华 《纺织学报》 EI CAS CSCD 北大核心 2016年第7期142-148,共7页
为探究熟条质量对喷气涡流纺纱线质量的影响,建立了遗传算法优化的支持向量回归机预测模型。模型的输入端参数为熟条的4项指标(条干CV值、回潮率、定量和定量不匀率),分别对19.7 tex和11.8 tex的涤纶/粘胶(67/33)喷气涡流纺纱线进行强... 为探究熟条质量对喷气涡流纺纱线质量的影响,建立了遗传算法优化的支持向量回归机预测模型。模型的输入端参数为熟条的4项指标(条干CV值、回潮率、定量和定量不匀率),分别对19.7 tex和11.8 tex的涤纶/粘胶(67/33)喷气涡流纺纱线进行强力和条干CV值预测试验,同时建立了BP神经网络模型作对比试验。2种模型预测对比分析的结果表明:遗传算法优化的支持向量回归机模型的稳定性和精度要比BP神经网络模型高得多,更适用于描述熟条质量与喷气涡流纺纱线质量(单纱强力和纱线条干CV值)间的非线性关系。 展开更多
关键词 遗传算法 支持向量回归 喷气涡流纺 纱线强力 条干CV值
在线阅读 下载PDF
基于遗传算法-支持向量机的兔肝VX2肿瘤光谱鉴别 被引量:7
10
作者 刘晨阳 许黄蓉 +3 位作者 段峰 王泰升 卢振武 鱼卫星 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第10期3123-3128,共6页
兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正... 兔肝VX2肿瘤是一种快速生长的肿瘤模型,可以在多种器官如肝、肺、直肠等快速生长,常用于肿瘤研究。采用可见-近红外高光谱技术对四只兔子的兔肝VX2肿瘤和正常组织进行活体和离体的反射光谱检测,然后采用支持向量机分别实现了二分类(正常肝组织和肝VX2肿瘤组织)和四分类(未出血活体正常肝组织、未出血活体VX2肿瘤组织、出血离体正常肝组织和出血离体肝VX2肿瘤组织)。根据其光谱反射曲线的特征,选择了400~1800 nm区间的数据为特征变量。为进一步提高分类准确率,分别采用5折交叉验证和遗传算法对支持向量机的核函数参数g和惩罚因子c进行了优化。其中5折交叉验证优化参数和分类结果为:二分类优化的惩罚参数c为4,核函数参数g为0.1250,其校正集和预测集的准确率都达到了100%;四分类中优化出的参数c为8,g为0.1211,其校正集和预测集的准确率分别达到了99.2424%和93.333%。遗传算法优化参数和结果为:二分类中优化的参数c为0.8456,g为0.0625,其校正集和预测集的准确率同样都达到了100%;四分类中优化的参数c为5.5307,g为0.0685,其校正集和预测集的准确率分别达到了99.2424%和100%。结果显示两种优化方法都取得了很好的效果,遗传算法优化参数对四分类的分类更为精确。为进一步提升算法速度,采用间隔选取变量的方法来不断减少特征变量,最终每隔100 nm谱段选择一个变量,共选择14个谱段作为特征变量。采用遗传算法优化支持向量机参数并对其分类进行了研究,结果表明:二分类和四分类的校正集和预测集结果准确率均为99.2424%,而且运行时间分别为11.4和20.0 s,与选择全波段的运行时间:340.3和491.0 s相比,说明多光谱技术可以进行肝VX2肿瘤组织和正常肝组织的鉴别,且分类准确率可达99%以上,而且运行时间缩短了很多。为未来多光谱技术在未来临床肿瘤诊断中实现肿瘤组织的快速实时在线检测和分类奠定了基础,显示出巨大的应用潜力。 展开更多
关键词 兔肝VX2肿瘤 可见-近红外光谱 遗传算法 支持向量
在线阅读 下载PDF
基于遗传算法和支持向量回归的锂电池健康状态预测 被引量:32
11
作者 刘皓 胡明昕 +1 位作者 朱一亨 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期329-334,351,共7页
为了提高锂电池健康状态(SOH)的预测精度,该文提出了1种基于遗传算法和支持向量回归(GA-SVR)的联合算法。通过GA解决SVR模型中的超参数优化问题。GA-SVR随机生成1组染色体,每个染色体包含了相应的SVR超参数信息。利用适应度函数计算出... 为了提高锂电池健康状态(SOH)的预测精度,该文提出了1种基于遗传算法和支持向量回归(GA-SVR)的联合算法。通过GA解决SVR模型中的超参数优化问题。GA-SVR随机生成1组染色体,每个染色体包含了相应的SVR超参数信息。利用适应度函数计算出每条染色体的适应度值。根据适应度值对染色体进行选择、基因重组和变异等遗传操作,从而更新染色体的超参数信息。经过多次迭代后,找到适应度最大的染色体。从该染色体中提取相应的超参数信息,并训练最终的SVR预测模型。在美国国家航空航天局(NASA)锂电池数据集上的实验结果表明,该文算法优于基于混合像元核函数的高斯过程回归(SMK-GPR)算法、基于多尺度周期协方差函数的高斯过程回归(P-MGPR)算法、基于多尺度平方指数函数的高斯过程回归(SE-MGPR)算法和改进的基于粒子群优化的支持向量回归(IPSO-SVR)算法。 展开更多
关键词 遗传算法 支持向量回归 锂电池 健康状态 超参数优化
在线阅读 下载PDF
基于遗传算法优化的支持向量回归的室内定位算法 被引量:13
12
作者 刘旭明 王伟 《科学技术与工程》 北大核心 2019年第2期114-119,共6页
基于zigbee接收信号强度指示的室内定位由于成本低,硬件功耗低,易于实现而受到越来越多的关注。为了提高zigbee技术的室内定位精度,减少环境因素的不利影响,提出了一种遗传算法优化支持向量回归的室内定位方法。该算法分为离线采集和在... 基于zigbee接收信号强度指示的室内定位由于成本低,硬件功耗低,易于实现而受到越来越多的关注。为了提高zigbee技术的室内定位精度,减少环境因素的不利影响,提出了一种遗传算法优化支持向量回归的室内定位方法。该算法分为离线采集和在线预测两个阶段,离线采集进行指纹数据库的建立,在线预测则根据训练模型进行位置预测。首先所有的采集数据通过卡尔曼滤波进行处理,然后通过遗传算法优化支持向量回归(GA-SVR)的惩罚参数、径向基函数(RBF)核宽度和损失函数变量,从而使支持向量回归达到最好的位置预测性能。在实际场景中的实验结果表明,与粒子群优化支持向量回归(PSO-SVR)、网格搜索优化支持向量回归(GS-SVR)、支持向量回归(SVR)和加权K最近邻(WKNN)算法相比,该算法具有较好的定位性能。 展开更多
关键词 ZIGBEE 接收信号强度指示 遗传算法 支持向量回归
在线阅读 下载PDF
基于遗传算法优化参数的支持向量机燃煤发热量预测 被引量:27
13
作者 江文豪 韦红旗 +1 位作者 屈天章 朱锋 《热力发电》 CAS 北大核心 2011年第3期14-19,共6页
利用支持向量回归机(SVR)和遗传算法(GA)对煤的低位发热量建模,采用遗传算法对支持向量机预测模型的各项参数进行寻优,为减少所选参数对训练样本的依赖性,引入交叉验证的思想,以推广能力最好的一组参数作为最终参数。将优化参数代入SVR... 利用支持向量回归机(SVR)和遗传算法(GA)对煤的低位发热量建模,采用遗传算法对支持向量机预测模型的各项参数进行寻优,为减少所选参数对训练样本的依赖性,引入交叉验证的思想,以推广能力最好的一组参数作为最终参数。将优化参数代入SVR模型,得到基于遗传算法的支持向量回归机(GA-SVR)模型。通过对电厂入炉煤的试验数据进行分析,并且与常规SVR模型和BP神经网络模型(BP-ANN)进行对比,以验证该模型的可靠性和精确性。结果表明,该方法可准确地预测燃煤发热量。 展开更多
关键词 支持向量回归 遗传算法 神经网络 低位发热量 预测
在线阅读 下载PDF
基于遗传算法优化支持向量机的大坝安全性态预测模型 被引量:36
14
作者 谷艳昌 吴云星 +1 位作者 黄海兵 庞琼 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期419-425,共7页
为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输... 为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输出,采用训练样本对支持向量机进行训练,并使用训练好的模型预测效应量。根据概率统计理论中的3σ准则,建立大坝安全性态三级指标和判别准则。以某大型水库大坝为例,建立该大坝的GA-SVM模型,并与SVM模型和逐步回归模型进行了对比验证。预测结果表明,GA-SVM模型渗压预测值与实测值最接近,预测精度较SVM模型和逐步回归模型提高了约3倍。 展开更多
关键词 水库大坝 安全性态 预测模型 遗传算法 支持向量 k-折交叉验证 小波去躁 逐步回归
在线阅读 下载PDF
基于遗传-支持向量回归的煤层底板突水量预测研究 被引量:26
15
作者 曹庆奎 赵斐 《煤炭学报》 EI CAS CSCD 北大核心 2011年第12期2097-2101,共5页
针对煤层底板突水问题的小样本、非线性特点,采用支持向量回归算法对突水量进行预测,避免了定性分析的局限性。利用遗传算法全局搜索能力的优势,提出了基于遗传算法的支持向量回归参数寻优方法,并建立煤层底板突水量预测的遗传-支持向... 针对煤层底板突水问题的小样本、非线性特点,采用支持向量回归算法对突水量进行预测,避免了定性分析的局限性。利用遗传算法全局搜索能力的优势,提出了基于遗传算法的支持向量回归参数寻优方法,并建立煤层底板突水量预测的遗传-支持向量回归模型。该模型首先通过遗传算法对训练样本的学习,得到支持向量回归机的最优参数值,然后运用遗传-支持向量回归模型对测试样本进行突水量预测。测试结果表明:与神经网络,传统支持向量回归机的预测值相比,煤层底板突水量预测的遗传-支持向量回归模型精度高,具有较强的泛化能力。 展开更多
关键词 煤层底板 突水量预测 遗传算法 支持向量 支持向量回归
在线阅读 下载PDF
基于遗传算法的支持向量机预测有机物自燃点的研究 被引量:12
16
作者 时静洁 陈利平 +3 位作者 石宁 徐伟 杨惠 陈网桦 《中国安全科学学报》 CAS CSCD 北大核心 2011年第7期125-129,共5页
根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型... 根据定量构效关系(QSPR)原理,研究自燃点(AIT)与其分子结构间的内在定量关系。以265种有机化合物作为样本集,随机选择238种作为训练集,27种作为测试集,用遗传算法(GA)进行变量选择,分别建立多元线性回归(MLR)模型和支持向量机(SVM)模型研究有机物的自燃点与其分子结构间的关系。通过分析,发现造成模型预测效果不佳的原因是试验数据本身存在问题。通过对2个模型的比较,结果为GA-SVM模型明显优于GA-MLR模型,说明自燃点与其分子结构间具有很强的非线性关系。 展开更多
关键词 自燃点(AIT) 遗传算法(GA) 多元线性回归(MLR) 支持向量机(SVM) 定量构效关系(QSPR)
在线阅读 下载PDF
ε-支持向量回归机算法及其应用 被引量:9
17
作者 冼广铭 曾碧卿 《计算机工程与应用》 CSCD 北大核心 2008年第17期40-42,共3页
针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点... 针对现有传统的一些图像去噪方法难以获得清晰图像边缘的问题,提出了利用ε-SVR技术构建图像去噪滤波器的新方法。ε-支持向量回归机通过引入ε不敏感损失函数,可以实现具有较强鲁棒性的回归,而且回归估计是稀疏的,保留了SVM的所有优点。分析了ε-支持向量回归机理论算法及其在图像去噪中的应用,使用ε-支持向量回归机对图像进行滤波并且与最小值滤波、均值滤波和维纳滤波等常用的滤波方法相比较,还比较了SVM各种核函数对不同噪声的滤波效果和分析了不同阶数的Multi-nomial核的滤波效果。实验结果表明了ε-支持向量回归机能够有效地去除噪声,不但信噪比较高而且比较清晰,同时具有良好的稀疏性。 展开更多
关键词 ε-支持向量回归 ε不敏感损失函数 图像去噪
在线阅读 下载PDF
基于遗传算法和最小二乘支持向量机的织物剪切性能预测 被引量:2
18
作者 卢桂馥 王勇 +1 位作者 窦易文 Gui-fu Yi-wen 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神... 提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力. Abstract: A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method. 展开更多
关键词 基于遗传算法 最小二乘支持向量 织物 剪切 性能预测模型 SUPPORT VECTOR MACHINES sampling data SUPPORT VECTOR MACHINES generalization ability simulation results linear regression genetic algorithm BP neural network prediction model 线性回归方法 LS-SVM least square 归一化处理 new method 预测结果
在线阅读 下载PDF
基于遗传-支持向量回归的车内稳态噪声声品质预测 被引量:5
19
作者 朱仝 郑松林 袁卫平 《噪声与振动控制》 CSCD 2020年第3期170-174,193,共6页
为了稳定、精确地评价车内稳态噪声声品质,以车内稳态噪声为研究对象,进行主观评价试验,计算客观心理声学参数并完成了相关性分析。建立基于支持向量回归(Support Vector Regression,SVR)的车内稳态噪声声品质预测模型,并使用遗传算法(G... 为了稳定、精确地评价车内稳态噪声声品质,以车内稳态噪声为研究对象,进行主观评价试验,计算客观心理声学参数并完成了相关性分析。建立基于支持向量回归(Support Vector Regression,SVR)的车内稳态噪声声品质预测模型,并使用遗传算法(Genetic Algorithm,GA)对支持向量回归的超参数进行优化。其后建立基于反向传播神经网络(Back Propagation Artificial Neural Network,BPANN)的声品质预测模型。对比分析发现遗传-支持向量回归(GASVR)模型预测精度高于BP神经网络。结果表明,遗传-支持向量回归适用于车内稳态噪声声品质预测,能够较大提高车内稳态噪声声品质预测精度和工程效率。 展开更多
关键词 声学 车内稳态噪声 声品质 支持向量回归 遗传算法 主客观评价
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
20
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部