期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
1
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于遗传算法优化反向传播网络的汽车造型评价
2
作者 李彦龙 叶升飞 张娜 《同济大学学报(自然科学版)》 北大核心 2025年第5期786-792,共7页
针对汽车造型评价存在由于主观性高而导致可靠性低的问题,运用遗传算法原理对评价方法进行了优化。通过遗传算法的优化,基于反向传播(BP)神经网络的汽车造型评价,减小了评价误差。通过问卷调研构建数据集,使用汽车的18个评价对象作为输... 针对汽车造型评价存在由于主观性高而导致可靠性低的问题,运用遗传算法原理对评价方法进行了优化。通过遗传算法的优化,基于反向传播(BP)神经网络的汽车造型评价,减小了评价误差。通过问卷调研构建数据集,使用汽车的18个评价对象作为输入,整车评价作为输出,创建了融合遗传算法的反向传播(GA-BP)网络结构,并在Matlab中进行了仿真预测。研究结果表明,经过优化的BP神经网络预测值的相对误差均值由6.7%下降至1.7%,显著提升了汽车造型评价的可靠性,具有更好的预测能力和实际应用潜力。 展开更多
关键词 汽车造型评价 反向传播神经网络 遗传算法应用
在线阅读 下载PDF
应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果 被引量:6
3
作者 冯国红 朱玉杰 +1 位作者 徐华东 蒋天宁 《东北林业大学学报》 CAS CSCD 北大核心 2020年第6期56-60,共5页
以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传... 以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传播(BP)神经网络输入量,测试了BP神经网络识别两种树种的效果。结果表明:寻优前,获得高识别率的主成分区间较窄,仅有5种情况识别效果理想,此种情况不利于主成分数的恰当选择;寻优后,获得高识别率的主成分区间较宽,从前6到前17有12种情况可供选择,此种情况更利于主成分的合理选择;寻优后的识别率比寻优前高,且稳定性较好。利用近红外光谱,依据GA-PCA-BP神经网络方法识别树种是一种理想的方法。 展开更多
关键词 树种识别 近红外光谱 遗传算法 主成分分析 反向传播神经网络
在线阅读 下载PDF
基于GA-BP神经网络的冷连轧带钢板形预测
4
作者 杨熙成 叶俊成 +1 位作者 谢璐璐 孙杰 《材料与冶金学报》 北大核心 2025年第1期55-61,共7页
为了提高冷连轧过程中板形预设定和闭环反馈的控制效果,以1450 mm五机架UCM冷连轧机组为研究对象,对1742个实验数据进行分类和预处理,以74个工艺参数变量作为输入特征,20个不同位置的板形值作为输出结果,构建了反向传播(backpropagation... 为了提高冷连轧过程中板形预设定和闭环反馈的控制效果,以1450 mm五机架UCM冷连轧机组为研究对象,对1742个实验数据进行分类和预处理,以74个工艺参数变量作为输入特征,20个不同位置的板形值作为输出结果,构建了反向传播(backpropagation,BP)神经网络模型,并采用遗传算法(genetic algorithm,GA)进行优化,得到了基于遗传算法的反向传播(GA-BP)神经网络模型.结果表明,所构建的GA-BP神经网络模型在拟合优度、预测精度和稳定性等方面均优于BP神经网络模型,其RMSE值从0.9818 I降至0.4476 I,MAE值从0.6225 I降至0.2193 I,R^(2)由0.7454增至0.9131. 展开更多
关键词 冷轧带钢 板形预测 反向传播神经网络 遗传算法
在线阅读 下载PDF
基于遗传算法-反向传播神经网络的径向式导叶多级泵水力性能优化 被引量:7
5
作者 王延锋 张连军 段海鹏 《科学技术与工程》 北大核心 2021年第4期1375-1381,共7页
针对径向式导叶多级泵内部流动状态复杂多变而导致其水力性能曲线难以精确测量的技术难题,采用遗传算法(genetic algorithm,GA)迭代优化反向传播(back propagation,BP)神经网络的权值与阈值,构建了基于GA-BP神经网络的径向式导叶多级泵... 针对径向式导叶多级泵内部流动状态复杂多变而导致其水力性能曲线难以精确测量的技术难题,采用遗传算法(genetic algorithm,GA)迭代优化反向传播(back propagation,BP)神经网络的权值与阈值,构建了基于GA-BP神经网络的径向式导叶多级泵水力性能预测模型,以MD500-57型径向式导叶多级泵为研究对象,建立了输入层为13个神经元、隐含层为10个神经元、输出层为2个神经元的GA-BP神经网络,采用正交试验方法设计了试验参数的正交试验方案,运用数值模拟计算方法对正交试验方案进行求解,获得了试验参数的训练样本,并对神经网络进行训练与测试,计算了过流部件关键几何参数的最优组合方案。试验结果表明:优化后该多级泵在设计工况下扬程增加了2.4 m,效率提高了3.34%,且高效区范围变宽。 展开更多
关键词 径向式导叶多级泵 水力性能 遗传算法 反向传播(BP)神经网络 性能预测
在线阅读 下载PDF
反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用 被引量:7
6
作者 游云 黄晓霞 +6 位作者 肖斯立 刘巧瑜 蓝碧锋 胡昕 吴俊师 杨娟 曾晓房 《食品科学》 EI CAS CSCD 北大核心 2024年第8期228-237,共10页
为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(A... 为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(Asp)和甜味(Gly、Ala、Ser)游离氨基酸的含量。以辐照黑椒牛肉的汁液流失率、硫代巴比妥酸反应产物值、总挥发性盐基氮值、原肌球蛋白条带强度比率、肌球蛋白重链条带强度比率和总游离氨基酸含量为输入变量,优化了反向传播-人工神经网络(backpropagation-artificial neural network,BP-ANN)模型。训练函数为ReLU函数,隐藏层神经元个数为14个,迭代次数100次。结果表明,6-14-6 BP-ANN模型可以较好地预测辐照黑椒牛肉的品质变化,该模型在预测辐照肉制品的多种品质方面具有很大潜力。 展开更多
关键词 黑椒牛肉 ^(60)Co-γ射线 品质 反向传播-人工神经网络 预测模型
在线阅读 下载PDF
优化反向传播神经网络的自适应遗传算法 被引量:2
7
作者 戈玲 吴新余 《南京邮电学院学报》 1998年第3期1-4,共4页
探讨了用遗传算法优化反向传播神经网络的问题。通过对不同遗传操作的分析和改进,提出了一种能有效进行局部搜索和全局搜索的自适应遗传算法。计算结果表明,该算法能快速地求出问题的全局最优解,且具有较好的计算精度。
关键词 遗传算法 自适应算法 神经网络 反向传播
在线阅读 下载PDF
基于遗传算法-鲸鱼算法优化反向传播神经网络的土壤参数预测 被引量:2
8
作者 陈智威 《浙江农业科学》 2019年第1期125-128,140,共5页
传统的土壤参数预测常采用物理、化学等方法,在预测准确性上存在较大误差,且易受到人为因素的影响。基于反向传播(BP)神经网络及其改进算法的土壤参数预测方法虽然不受人为因素的影响,但仍有较大的误差。为进一步提高神经网络预测精度,... 传统的土壤参数预测常采用物理、化学等方法,在预测准确性上存在较大误差,且易受到人为因素的影响。基于反向传播(BP)神经网络及其改进算法的土壤参数预测方法虽然不受人为因素的影响,但仍有较大的误差。为进一步提高神经网络预测精度,使用遗传算法-鲸鱼算法(GA-WOA)的混合算法优化BP神经网络,以此建立农业土壤参数预测模型,并与多种现有算法进行对比。结果显示,所提算法在农业土壤参数预测方面具有很强的适用性和更高的准确性。 展开更多
关键词 遗传算法 鲸鱼算法 反向传播神经网络 土壤参数 模型
在线阅读 下载PDF
反向传播神经网络联合遗传算法对复合材料模量的预测 被引量:7
9
作者 王卓鑫 赵海涛 +4 位作者 谢月涵 任翰韬 袁明清 张博明 陈吉安 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第10期1341-1348,共8页
为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变... 为减少测试成本和缩短设计周期,基于机器学习方法对树脂基复合材料模量的预报方法进行了研究.采用一种全新预测方法——神经网络联合遗传算法(GA-ANN),将T800/环氧复合材料的强度、泊松比和失效应变作为反向传播(BP)神经网络的3个输入变量,在遗传算法(GA)中得出最优阈值和权重,并将所得数值赋给对应的网络参数,更新BP神经网络以更高的准确率预测树脂基复合材料的模量;同等条件下,用Adam算法进行预测.对比这两种方法,结果充分证明了GA-ANN的可行性. 展开更多
关键词 机器学习 反向传播神经网络 遗传算法 复合材料模量 Adam算法
在线阅读 下载PDF
基于多目标遗传算法和反向传播神经网络的调节阀流道结构优化 被引量:6
10
作者 吕家皓 吴欣 何磊 《机电工程》 CAS 北大核心 2023年第12期1880-1888,共9页
以往的研究中,只针对调节阀迷宫流道结构和内部流场特性进行了分析,但对迷宫流道抗空化性能和流通性能的优化设计较欠缺。为了满足阀门实际工程中的设计需求,迷宫式调节阀需要具有流道抗空化性能和流通性能。为此,提出了一种基于多目标... 以往的研究中,只针对调节阀迷宫流道结构和内部流场特性进行了分析,但对迷宫流道抗空化性能和流通性能的优化设计较欠缺。为了满足阀门实际工程中的设计需求,迷宫式调节阀需要具有流道抗空化性能和流通性能。为此,提出了一种基于多目标遗传算法(MOGA)和反向传播神经网络(BPNN)的方法,对调节阀迷宫流道进行了结构优化,提高了迷宫流道的抗空化性能和流通性能。首先,基于对冲耗能原理和多级降压原理,设计了弧形对冲式迷宫流道,并建立了流体力学仿真计算的数学模型;然后,利用计算流体动力学(CFD)仿真软件,对模型进行了空化仿真,根据仿真的数据构建了BPNN代理模型,通过结合Sobol敏感度分析方法与代理模型,分析了迷宫流道各参数对仿真结果的影响,采用多目标遗传算法,优化了迷宫流道的结构;最后,搭建了实验测试平台,测量了迷宫流道的阻塞流曲线,对比分析了测试结果与仿真结果。研究结果表明:采用优化算法得到的迷宫流道最大流量由0.0876 kg/s提高到0.1174 kg/s,提高了34%;线性压差由762.163 kPa提高到811.280 kPa,提高了6%;优化的迷宫流道实际最大流量为0.1159 kg/s,提高了33%;线性压差为819 kPa,提高了7%。迷宫流道抗空化性能和流通性能同时得到了提高,证明了仿真的有效性和该方法的可行性。 展开更多
关键词 液压控制阀 迷宫流道 抗空化性能 流通性能 反向传播神经网络 多目标遗传算法 计算流体动力学
在线阅读 下载PDF
基于神经网络-高斯赫尔默特模型联合多点GNSS定位方法
11
作者 林海飞 彭友志 +1 位作者 夏玉国 何浩鹏 《大地测量与地球动力学》 北大核心 2025年第3期303-307,共5页
为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与... 为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与传统线性化方法相比,BP神经网络能够有效拟合复杂的非线性函数关系。仿真和实测结果表明,该方法能有效降低复杂环境对定位精度的影响,E、N、U方向定位精度分别提高78.1%、72.8%、79.2%。 展开更多
关键词 GNSS 复杂环境 高斯-赫尔模特模型 反向传播神经网络 误差估计
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
12
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
13
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子群算法 改进粒子群优化-反向传播神经网络(IPSO-BPNN) 预测模型
在线阅读 下载PDF
遗传算法优化BP神经网络的混沌时间序列预测 被引量:71
14
作者 李松 罗勇 张铭锐 《计算机工程与应用》 CSCD 北大核心 2011年第29期52-55,共4页
为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求... 为提高BP神经网络预测模型对混沌时间序列的预测精度,将改进的遗传算法和BP神经网络结合,提出了一种基于改进遗传算法优化BP神经网络的混沌时间序列预测方法。利用改进的遗传算法优化BP神经网络的权值和阈值,训练BP神经网络预测模型求得最优解。将该模型应用到几个典型的非线性系统进行预测仿真,验证了该算法的有效性,与BP神经网络预测模型的预测结果进行了比较,仿真结果表明该方法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。 展开更多
关键词 混沌理论 预测 反向传播(BP)神经网络 遗传算法
在线阅读 下载PDF
遗传算法与神经网络结合优化焊接接头力学性能预测模型 被引量:20
15
作者 董志波 魏艳红 +1 位作者 占小红 魏永强 《焊接学报》 EI CAS CSCD 北大核心 2007年第12期69-72,共4页
基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模... 基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模型性能的分析表明,焊接接头力学性能预测模型的预测规律符合已有研究结论,预测误差小于5%。随着样本数据的不断充实,样本覆盖空间的不断扩大,力学性能预测模型的应用范围将不断扩大,其实际应用价值也必将越来越高。 展开更多
关键词 遗传算法 神经网络 反向传播 力学性能预测模型
在线阅读 下载PDF
遥感影像的神经网络分类及遗传算法优化 被引量:12
16
作者 童小华 张学 刘妙龙 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期985-989,共5页
针对传统遥感影像分类方法难以辨识波谱特性相似的地物,而标准反向传播学习(back propagation,BP)神经网络分类方法存在网络训练速度慢、局部极值等收敛性问题,探讨了采用遗传算法(genetic algorithms,GA)优化BP网络结构方法进行遥感影... 针对传统遥感影像分类方法难以辨识波谱特性相似的地物,而标准反向传播学习(back propagation,BP)神经网络分类方法存在网络训练速度慢、局部极值等收敛性问题,探讨了采用遗传算法(genetic algorithms,GA)优化BP网络结构方法进行遥感影像分类.在BP网络分类的基础上,着重阐述了遗传算法实现BP网络隐含层神经元数、阈值和连接权值的优化方法,提出了遗传算法的变长实数编码方式,改进了遗传进化方式使BP网络进化达到最优.最后,以淀山湖区域的陆地卫星专题制图仪(Landsat thematic mapper,TM)影像分类为例,应用本文改进算法与其他分类方法进行了分析比较,得到了较高的分类精度,验证了采用遗传算法优化神经网络的可行性和有效性. 展开更多
关键词 遥感分类 人工神经网络 反向传播学习 遗传算法 精度评价
在线阅读 下载PDF
基于遗传算法的BP神经网络在企业资信评估中的应用 被引量:10
17
作者 孟凡超 张洪伟 徐剑 《计算机应用研究》 CSCD 北大核心 2007年第8期301-303,305,共4页
提出了一种新的企业资信评估方法。通过把神经网络和遗传算法有机地结合起来,既克服了传统BP网络训练时间长、易陷入局部极值的缺点,又利用遗传算法提高了网络全局收敛的效率。该模型采用C#.NET+SQL server 2000实现。实验结果表明,基... 提出了一种新的企业资信评估方法。通过把神经网络和遗传算法有机地结合起来,既克服了传统BP网络训练时间长、易陷入局部极值的缺点,又利用遗传算法提高了网络全局收敛的效率。该模型采用C#.NET+SQL server 2000实现。实验结果表明,基于遗传算法的BP神经网络系统对企业资信评估有着良好的性能。 展开更多
关键词 遗传算法 反向传播神经网络 资信等级评估
在线阅读 下载PDF
基于遗传算法的BP神经网络的LED寿命预测模型 被引量:10
18
作者 吴志杰 孔凡敏 李康 《半导体技术》 CAS CSCD 北大核心 2018年第5期375-380,共6页
提出了一种新型的基于遗传算法(GA)优化的误差反向传播(BP)神经网络的寿命预测模型。选取不同公司生产的LED,以LED光源光通量维持率测量方法 (LM-80-08)测试报告中的电流、结温、初始光通量和初始色坐标作为神经网络的输入,LED在... 提出了一种新型的基于遗传算法(GA)优化的误差反向传播(BP)神经网络的寿命预测模型。选取不同公司生产的LED,以LED光源光通量维持率测量方法 (LM-80-08)测试报告中的电流、结温、初始光通量和初始色坐标作为神经网络的输入,LED在网络输入的应力条件下的寿命为输出,可以预测LED在任意电流和结温下的寿命。研究结果表明,该GA-BP模型相比于LED光源长期流明维持率的预测方法 (TM-21-11)更具灵活性,预测误差较传统BP神经网络降低了65.5%,平均相对误差达到1.47%,优于Adaboost模型的54%和3.16%,训练样本相关系数达到99.4%,GA-BP模型预测LED寿命误差更小,普适性更高,在LED的寿命预测中具有实际意义。 展开更多
关键词 发光二极管(LED) 误差反向传播(BP)神经网络 遗传算法(GA) 寿命预测 相关系数
在线阅读 下载PDF
基于遗传算法和BP神经网络的海洋工程材料腐蚀预测研究 被引量:19
19
作者 李海涛 袁森 《海洋科学》 CAS 北大核心 2020年第10期33-38,共6页
为提高海洋工程材料腐蚀速率预测的精度,提出了一种基于遗传算法(GA)优化反向传播(Back Propagation,BP)神经网络的海洋工程材料海洋环境腐蚀速率预测模型。通过遗传算法对BP神经网络的权值和阈值进行优化,利用优化后的BP神经网络对试... 为提高海洋工程材料腐蚀速率预测的精度,提出了一种基于遗传算法(GA)优化反向传播(Back Propagation,BP)神经网络的海洋工程材料海洋环境腐蚀速率预测模型。通过遗传算法对BP神经网络的权值和阈值进行优化,利用优化后的BP神经网络对试验数据进行预测。GA-BP模型选取具有代表性的2Cr1312不锈钢、Q235B碳钢和6082铝合金三种基本海洋工程材料数据进行试验,预测结果误差小于传统BP神经网络,并且在网络训练时间上有所缩短,预测精度上有所提高。本模型在海洋工程材料于海洋环境中腐蚀速率的实际预测中具有良好的推广价值。 展开更多
关键词 腐蚀速率预测 ga-bp模型 遗传算法 反向传播(Back Propagation BP)神经网络
在线阅读 下载PDF
基于GA-BP神经网络算法的FDM 3D打印制件拉伸性能预测 被引量:6
20
作者 白鹤 赵明侠 +4 位作者 袁一如 刘亚明 何石磊 庞瑞 郭晓东 《塑料工业》 CAS CSCD 北大核心 2022年第9期192-197,共6页
为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填... 为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填充密度、喷嘴温度、填充速度以及外壳厚度为输入层参数,拉伸强度为输出层参数进行训练和预测,并分析其预测精度。通过对GA-BP和BP神经网络模型的预测结果进行对比发现,GA-BP神经网络模型预测值与测试实际值更为接近,误差平均值为2.27%,而BP神经网络模型预测误差平均值为4.10%,且GA-BP神经网络模型评价指标值均优于BP神经网络模型,故GA-BP神经网络模型预测精度更高,可为提升FDM 3D打印制件力学性能,优化成型工艺,指导工业生产提供参考。 展开更多
关键词 遗传算法-反向传播神经网络 熔融沉积成型 拉伸性能 工艺参数 预测
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部