期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
遗传算法设计神经网络的一种新方法
1
作者 黎明 陈敏 +1 位作者 杨小芹 刘高航 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第z1期54-57,共4页
提出了一种基于平均风险误差准则的遗传算法优化设计前向神经网络的方法,遗传算法的适应度函数并不采用基于传统的最小均方误差准则,而是由最小平均风险误差准则所决定,这种方法在计算神经网络输出与期望输出之间误差的同时,还要考... 提出了一种基于平均风险误差准则的遗传算法优化设计前向神经网络的方法,遗传算法的适应度函数并不采用基于传统的最小均方误差准则,而是由最小平均风险误差准则所决定,这种方法在计算神经网络输出与期望输出之间误差的同时,还要考虑神经网络对每一类训练样本产生的这种误差所引起的风险损失.这种方法优化得到的神经网络不但可以准确地再现训练样本集合的期望输出,对训练样本集合外样本的预测能力也有明显的提高. 展开更多
关键词 遗传算法:神经网络 优化设计 风险误差
在线阅读 下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
2
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
3
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts 被引量:1
4
作者 PIRMOHAMMAD Sadjad AHMADI-SARAVANI Soheil ZAKAVI S.Javid 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2729-2745,共17页
In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures ... In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm. 展开更多
关键词 CRASHWORTHINESS foam-filled tapered structure axial and oblique impact RBF neural network and genetic algorithm TOPSIS technique
在线阅读 下载PDF
Hybrid optimization model of product concepts
5
作者 薛立华 李永华 《Journal of Central South University of Technology》 EI 2006年第1期105-109,共5页
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating... Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms. 展开更多
关键词 conceptual design morphological matrix genetic algorithm neural network hybrid optimization model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部