期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
光谱线型的遗传学算法模拟
1
作者 孙平 潘传红 +2 位作者 崔正英 丁玄同 王全明 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2005年第4期269-272,共4页
采用遗传算法模拟了Dα的光谱轮廓,模拟曲线与实验中观察到的轮廓符合得非常好。分析模拟的结果表明,在HL-1M装置边缘等离子体中,存在一种H粒子群和三种D粒子群,它们有各自的温度和粒子数比例。
关键词 光谱轮廓 遗传学算法
在线阅读 下载PDF
遗传学算法在船舶航线自适应控制器中的应用 被引量:4
2
作者 刘志方 《舰船科学技术》 北大核心 2017年第7X期22-24,共3页
为了提高大型海上运输船在复杂海上交通条件的航行能力和运载能力,研究船舶航线自适应控制器具有重要意义。随着船舶结构和功能的复杂化,船舶航线控制的准确度和可靠性的难度越来越大。本文系统介绍遗传学算法,并利用该算法的自适应搜... 为了提高大型海上运输船在复杂海上交通条件的航行能力和运载能力,研究船舶航线自适应控制器具有重要意义。随着船舶结构和功能的复杂化,船舶航线控制的准确度和可靠性的难度越来越大。本文系统介绍遗传学算法,并利用该算法的自适应搜索能力和参数优化技术,设计和优化船舶航线自适应控制器,提高其控制精度和鲁棒性。 展开更多
关键词 遗传学算法 航线自适应控制 参数优化
在线阅读 下载PDF
神经网的遗传学习算法 被引量:7
3
作者 陈明 王春华 郭禾 《计算机工程与应用》 CSCD 北大核心 1994年第9期68-69,21,共3页
遗传算法(GeneticAlgorithm)来自于遗传学和达尔文学说,主要应用于优化问题和规则的获取。它也是一种模拟进化的程序设计方法。在本文提出了神经网的遗传学习算法,通过一个种群进化的例子来说明遗传学习算法的有效... 遗传算法(GeneticAlgorithm)来自于遗传学和达尔文学说,主要应用于优化问题和规则的获取。它也是一种模拟进化的程序设计方法。在本文提出了神经网的遗传学习算法,通过一个种群进化的例子来说明遗传学习算法的有效性并获得了一些有意义的结果。 展开更多
关键词 遗传算法 神经网络 遗传学算法
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究 被引量:1
4
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(NSGA-Ⅱ) 多目标优化 平均传动压力角 传动效率
在线阅读 下载PDF
基于反距离加权插值法的产量劈分新方法 被引量:7
5
作者 王立 喻高明 +2 位作者 傅宣豪 罗晓芳 何桂平 《断块油气田》 CAS 北大核心 2018年第5期617-621,共5页
多层油藏开发实践表明,准确的产量劈分是实施油田开发增产措施和提高最终采收率的关键。常规的产量劈分方法在多层油藏产量劈分实际应用中存在诸多局限性,已难以解决多层油藏产量劈分问题。为更好地提高多层油藏产量劈分结果的精度,在... 多层油藏开发实践表明,准确的产量劈分是实施油田开发增产措施和提高最终采收率的关键。常规的产量劈分方法在多层油藏产量劈分实际应用中存在诸多局限性,已难以解决多层油藏产量劈分问题。为更好地提高多层油藏产量劈分结果的精度,在常规产量劈分方法分析的基础上,基于反距离加权插值法,建立一种新的产量劈分预测模型,并运用遗传学算法,将不确定的因素整体优化求解,进而进行多层油藏产量劈分。该方法应用于M油田X区块产量劈分,与常规方法相比,其计算结果较实测值偏差7.4%,与实际情况吻合度高,优势明显,能够较好解决多层油藏产量劈分问题,为实际油藏剩余油挖潜、提高采收率提供了重要数据。 展开更多
关键词 多层油藏 产量劈分 反距离加权插值法 遗传学算法
在线阅读 下载PDF
基于改进PSO神经网络的板形板厚解耦控制研究 被引量:1
6
作者 周建新 黄剑雄 李钊 《机床与液压》 北大核心 2020年第6期144-149,共6页
针对板形板厚综合系统具备强耦合、非线性、大时滞等特性,传统的控制方法无法对其完成精确解耦,导致控制精度较低。提出一种基于免疫机制的改进粒子群算法,同时借助此算法来优化处理PID神经网络(PIDNN),形成新型PIDNN控制器。利用两个PI... 针对板形板厚综合系统具备强耦合、非线性、大时滞等特性,传统的控制方法无法对其完成精确解耦,导致控制精度较低。提出一种基于免疫机制的改进粒子群算法,同时借助此算法来优化处理PID神经网络(PIDNN),形成新型PIDNN控制器。利用两个PIDNN解耦控制器对板形板厚综合系统进行控制以降低系统耦合影响。通过仿真结果可以看出,在动态性能与静态性能上,此算法较以往PIDNN解耦控制均存在明显优势。可为控制领域中的解耦问题提供一定的参考。 展开更多
关键词 解耦控制 PID神经元网络 免疫遗传学算法 板形 板厚
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
7
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
Estimation of kinetics parameters in Beckmann rearrangement of cyclohexanone oxime using genetic algorithm 被引量:4
8
作者 吴剑 李忠 罗和安 《Journal of Central South University of Technology》 EI 2006年第4期383-388,共6页
Beckmann rearrangement mechanism of cyclohexanone oxime, based on the characteristic of self-catalyzed reaction and polymorphism was proposed. According to the suggested mechanism, the basic approach was the rearrange... Beckmann rearrangement mechanism of cyclohexanone oxime, based on the characteristic of self-catalyzed reaction and polymorphism was proposed. According to the suggested mechanism, the basic approach was the rearrangement of OXH+ while the SO3 acts as dehydrating agent and OXSO3 can turn to CPLSO3 ultimately. Considering self-catalyzed reaction between OXSO3 and CPLH+, kinetic model for Beckmann rearrangement was established. Corresponding parameters were estimated by using float genetic algorithm (GA) and simulation results agree well with the experimental data below -19.3℃. Industrial equipment was simulated and analyzed. Effects of key process parameters such as molar ratio of sulfuric acid to oxime and circulation ratio on the residual oxime are also discussed. The results show that the caprolactam exists as CPLH+ finally in oleum and the minimum molecular ratio of sulfuric acid to oxime can be 0.5 theoretically. 展开更多
关键词 Beckmann rearrangement reaction kinetics genetic algorithm CAPROLACTAM
在线阅读 下载PDF
An improved brain emotional learning algorithm for accurate and efficient data analysis 被引量:1
9
作者 梅英 谭冠政 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1084-1098,共15页
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu... To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications. 展开更多
关键词 PREDICTION CLASSIFICATION brain emotional learning genetic algorithm
在线阅读 下载PDF
Preset model of bending force for 6-high reversing cold rolling mill based on genetic algorithm 被引量:4
10
作者 曹建国 徐小照 +3 位作者 张杰 宋木清 宫贵良 曾伟 《Journal of Central South University》 SCIE EI CAS 2011年第5期1487-1492,共6页
The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the r... The hydraulic roll-bending device was studied, which was widely used in modem cold rolling mills to regulate the strip flatness. The loaded roll gap crown mathematic model and the strip crown mathematic model of the reversing cold rolling process were established, and the deformation model of roll stack system of the 6-high 1 250 mm high crown (HC) reversing cold rolling mill was built by slit beam method. The simulation results show that, the quadratic component of strip crown decreases nearly linearly with the increase of the work roll bending force, when the shifting value of intermediate roll is determined by the rolling process. From the first pass to the fifth pass of reversing rolling process, the crown controllability of bending force is gradually weakened. Base on analyzing the relationship among the main factors associated with roll-bending force in reversing multi-pass rolling, such as strip width and rolling force, a preset mathematic model of bending force is developed by genetic algorithm. The simulation data demonstrate that the relative deviation of flatness criterions in each rolling pass is improved significantly and the mean relative deviation of all five passes is decreased from 25.1% to 1.7%. The model can keep good shape in multi-pass reversing cold rolling process with the high prediction accuracy and can be used to guide the production process. 展开更多
关键词 cold rolling mill STRIP bending force mathematic model genetic algorithm
在线阅读 下载PDF
Optimal design of structural parameters for shield cutterhead based on fuzzy mathematics and multi-objective genetic algorithm 被引量:12
11
作者 夏毅敏 唐露 +2 位作者 暨智勇 程永亮 卞章括 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期937-945,共9页
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ... In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%. 展开更多
关键词 shield tunneling machine cutterhead structural parameters fuzzy mathematics finite element optimization
在线阅读 下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor 被引量:2
12
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部