期刊文献+
共找到2,252篇文章
< 1 2 113 >
每页显示 20 50 100
基于遗传优化BP神经网络的发动机曲轴扭转减振器优化 被引量:5
1
作者 邬全法 张贵豪 +1 位作者 王普 范让林 《现代制造工程》 CSCD 北大核心 2019年第12期24-31,共8页
发动机曲轴轴系的扭转振动会影响发动机的性能以及整车舒适度,对曲轴扭转减振器进行优化可有效降低曲轴扭转振动。首先,针对直列四缸汽油发动机曲轴轴系建立多自由度集总参数模型,求出不同谐次激振力矩响应的叠加结果;然后,以优化曲轴... 发动机曲轴轴系的扭转振动会影响发动机的性能以及整车舒适度,对曲轴扭转减振器进行优化可有效降低曲轴扭转振动。首先,针对直列四缸汽油发动机曲轴轴系建立多自由度集总参数模型,求出不同谐次激振力矩响应的叠加结果;然后,以优化曲轴轴系扭振幅值为目标,建立曲轴扭转减振器优化设计的数学模型,应用遗传优化BP神经网络算法对扭转减振器进行优化;最后,在此基础上,将应用遗传优化BP神经网络算法和仅应用BP神经网络算法的优化结果进行对比,结果表明遗传优化BP神经网络模型的预测精度更高。将优化后的扭转减振器参数代入多自由度集总参数模型进行计算,得到与遗传优化BP神经网络算法预测值非常接近的曲轴轴系扭振幅值,进一步验证了遗传优化BP神经网络优化结果的准确性。 展开更多
关键词 汽车 发动机 曲轴 扭转减振器 谐量分析 遗传优化bp神经网络 优化设计
在线阅读 下载PDF
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测 被引量:42
2
作者 许童羽 马艺铭 +2 位作者 曹英丽 唐瑞 陈俊杰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第22期90-95,共6页
针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独... 针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独立的变量,作为神经网络的输入。同时利用遗传算法的全局搜索特性在解空间中定位一个较好的空间,优化BP的初始权值阈值,克服了传统BP神经网络易陷入局部极小点、学习收敛速度慢的问题。通过建立不同预测模型进行对比,验证了所提算法和模型的有效性。 展开更多
关键词 主成分分析 遗传算法 功率预测 bp神经网络 光伏系统
在线阅读 下载PDF
基于遗传优化BP神经网络的员工绩效评估实证研究 被引量:1
3
作者 田丽 段争光 +2 位作者 王勇 高来鑫 周明龙 《贵州师范大学学报(自然科学版)》 CAS 2012年第5期89-93,共5页
首先介绍了基于BP神经网络的单位员工绩效评估模型,再通过遗传算法对BP神经网络的参数进行优化,提高了BP神经网络算法进行绩效评估的精度和效率。最后通过实证分析证明了此算法在单位员工绩效评估中的可行性和有效性。
关键词 bp神经网络 遗传算法 绩效评估
在线阅读 下载PDF
改进的基于遗传优化BP神经网络的电网故障诊断 被引量:58
4
作者 袁圃 毛剑琳 +2 位作者 向凤红 刘恋 张茂兴 《电力系统及其自动化学报》 CSCD 北大核心 2017年第1期118-122,共5页
BP神经网络具有良好的自学习、自适应和泛化能力,但运算过程中容易陷入局部极小值,同时隐含层节点数的选择也影响着诊断的效果。文中根据经验公式缩小隐含层节点数范围,在小范围里寻找最优的隐含层节点数。根据遗传算法具有全局寻优的特... BP神经网络具有良好的自学习、自适应和泛化能力,但运算过程中容易陷入局部极小值,同时隐含层节点数的选择也影响着诊断的效果。文中根据经验公式缩小隐含层节点数范围,在小范围里寻找最优的隐含层节点数。根据遗传算法具有全局寻优的特点,用遗传算法优化BP神经网络训练的初始权值阈值,可以避免BP神经网络陷入局部极小值的问题。结合两种方法对电网进行故障诊断,实例分析表明该方法可以准确有效地诊断出电网故障位置,提高电网故障诊断的容错性。 展开更多
关键词 bp神经网络 电网故障诊断 隐含层 遗传算法 容错性
在线阅读 下载PDF
基于遗传优化BP神经网络算法的光伏系统最大功率点跟踪研究 被引量:27
5
作者 林虹江 周步祥 +2 位作者 冉伊 詹长杰 杨昶宇 《电测与仪表》 北大核心 2015年第5期35-40,共6页
针对恒压控制法中采用BP神经网络预测最大功率点处电压存在较大误差的情况,提出了用遗传算法来优化BP神经网络,然后用优化后的算法来预测光伏系统最大功率点之处的电压,并以此值代替基于恒电压的光伏发电系统MPPT控制算法中的恒电压参数... 针对恒压控制法中采用BP神经网络预测最大功率点处电压存在较大误差的情况,提出了用遗传算法来优化BP神经网络,然后用优化后的算法来预测光伏系统最大功率点之处的电压,并以此值代替基于恒电压的光伏发电系统MPPT控制算法中的恒电压参数;同时结合恒电压控制法建立了基于GA-BP神经网络学习算法的改进恒压型光伏系统MPPT控制的仿真模型。最后算例仿真结果证明所提的基于GA-BPNN的光伏系统MPPT控制算法能够快速准确地进行光伏最大功率点跟踪,并且相比于BP神经网络算法、干扰观察法及FUZZY控制算法其稳定性更好、精度更高。 展开更多
关键词 恒压控制法 最大功率点跟踪 遗传算法 bp神经网络 干扰观察法
在线阅读 下载PDF
基于遗传算法优化BP神经网络的板栗蒸腾量预测模型
6
作者 徐佳莹 宁璐 《南方农机》 2025年第14期5-8,20,共5页
【目的】准确估算作物蒸发蒸腾量并采用智能控制技术对灌溉量进行控制,减少作物生育期的水分消耗,提高作物水分利用率,发展节水农业。【方法】以北京农学院智能温室内盆栽板栗为研究对象,以光照强度、环境温度、环境湿度、环境内CO_(2)... 【目的】准确估算作物蒸发蒸腾量并采用智能控制技术对灌溉量进行控制,减少作物生育期的水分消耗,提高作物水分利用率,发展节水农业。【方法】以北京农学院智能温室内盆栽板栗为研究对象,以光照强度、环境温度、环境湿度、环境内CO_(2)含量、叶室内CO_(2)含量以及土壤含水量为主要测定影响因素,建立了一种基于遗传算法优化BP神经网络的板栗蒸腾量预测模型。并通过设立正常浇水组和抗旱少水组两个处理组,利用BP神经网络与遗传算法优化BP神经网络对测试数据进行建模,对比两种算法的仿真时间和预测误差。【结果】正常浇水组优化后的建模仿真时间减少了4.937 55 s,抗旱少水组优化后的建模仿真时间减少了6.124 97 s;正常浇水组优化后的误差值降低了0.737 9,抗旱少水组优化后的误差值降低了1.572 5,说明遗传算法优化BP神经网络预测模型的综合预测结果更优。【结论】遗传算法优化BP神经网络预测模型有效修正了传统BP神经网络预测过程中存在的弊端,能够更好地展现板栗蒸腾量的非线性特性。本研究可为植株蒸腾量估算和实际需水量计算提供新思路和方法,对植株实现智能化控制具有重要的理论意义和实用价值。 展开更多
关键词 遗传算法 bp神经网络 蒸腾量预测
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
7
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 bp神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
8
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 bp神经网络代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
基于BP神经网络——遗传算法的咖啡壳炭化工艺参数优化
9
作者 张霞 苏盼杰 +2 位作者 朱静哲 王伊洋 黄峻伟 《智能化农业装备学报(中英文)》 2025年第1期51-58,共8页
生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备... 生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备过程中的炭化温度、炭化时间和升温速率等工艺参数的显著影响,不同炭化工艺不仅决定了生物炭的理化性质,还直接影响其作为炭基肥的缓释性能。传统的实验方法往往需要大量的时间和资源投入,因此,探索更加高效的优化方法成为了研究的热点。本研究采用了BP神经网络与遗传算法相结合的优化方法,针对咖啡壳生物炭的炭化过程中的炭化温度、炭化时间和升温速率3个关键工艺参数进行预测和优化。研究结果表明,采用BP神经网络—遗传算法优化后的炭基肥,其最佳工艺参数为炭化时间2.8 h、炭化温度780.7℃和升温速率15.1℃/min。在此工艺条件下制备的咖啡壳生物炭基肥,其7 d养分累计释放率为45.9%,表明缓释性能得到了显著提升。综上所述,本研究提出了一种基于BP神经网络和遗传算法的生物炭炭化工艺参数优化方法,能够有效提高炭基肥的缓释性能。该方法不仅为生物炭制备工艺的优化提供了新的技术路径,也为相关领域的研究提供了重要参考,对推动高性能炭基肥的发展具有积极意义。 展开更多
关键词 生物炭 bp神经网络 遗传算法 炭基肥 工艺参数优化
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:1
10
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 bp神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
11
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-bp神经网络 遗传算法
在线阅读 下载PDF
遗传算法优化神经网络在地声参数反演中的应用
12
作者 赵振星 李琪 黄益旺 《哈尔滨工程大学学报》 北大核心 2025年第4期643-651,共9页
针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,... 针对浅海环境下传统匹配场反演方法对地声参数估计精度低的问题,本文将遗传算法优化的BP神经网络算法(GA-BP)应用到地声参数反演领域。首先仿真分析了噪声场垂直空间相关系数对地声参数变化的敏感度值,研究了GA-BP反演地声参数的效果,最后使用GA-BP处理实测海洋环境噪声数据,估计了海底密度、声速和衰减。仿真与实验结果表明:GA-BP相比于BP神经网络算法具有更快的网络训练速度以及更高的反演精度,利用GA-BP可以准确反演得到Pekeris波导的地声参数。反演得到的海洋环境噪声场空间相关系数曲线与实验测量结果吻合较好,二者皮尔逊相关系数达到0.98。本文证实了GA-BP算法在地声参数反演中的高效性与可靠性,为基于海洋环境噪声的无源地声参数提供了的技术支撑手段。 展开更多
关键词 海洋环境噪声 空间相关特性 敏感度分析 遗传算法 bp神经网络 Pekeris波导 地声参数反演 海上实验
在线阅读 下载PDF
基于BP神经网络的超空泡射弹优化设计方法
13
作者 巩世龙 党建军 +1 位作者 李少星 黄闯 《兵工学报》 北大核心 2025年第5期316-325,共10页
有效射程是超空泡射弹最重要的性能指标之一,受到外形和衡重参数的耦合影响。为了增加超空泡射弹的有效射程,建立计算超空泡射弹有效射程的数值模型,根据正交试验设计原则设计四因素五水平工况组合,通过仿真计算获得外形及衡重参数影响... 有效射程是超空泡射弹最重要的性能指标之一,受到外形和衡重参数的耦合影响。为了增加超空泡射弹的有效射程,建立计算超空泡射弹有效射程的数值模型,根据正交试验设计原则设计四因素五水平工况组合,通过仿真计算获得外形及衡重参数影响下的超空泡射弹有效射程数据集,结合反向传播(Back Propagation, BP)神经网络方法和遗传算法,建立超空泡射弹设计参数优化方法,获得全域最大有效射程及其对应的外形和衡重参数设计结果。研究结果表明:超空泡射弹的水下弹道具有稳定的尾拍特性,通过极差分析,质量对有效射程的影响最大;在没有精确数学模型的情况下,运用BP神经网络,基于有限个数据点训练出的有效射程预测模型精度高,平均误差为0.735%;通过遗传算法获得了四因素耦合影响下的全域最优射程,较数据集中的最好结果提高了5.01%,较正交优化结果提升了1.95%。所得研究结果可为超空泡射弹总体设计工作提供参考。 展开更多
关键词 超空泡射弹 正交试验 bp神经网络 遗传算法
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
14
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于人工神经网络耦联遗传算法优化肉葡萄球菌高密度培养基配方
15
作者 王仪 祝超智 +4 位作者 白雪原 郑飏衣 张新军 仝林 赵改名 《肉类研究》 北大核心 2025年第5期1-9,共9页
为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algo... 为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algorithm,ANN-GA)模型。结果表明,氮源是影响肉葡萄球菌活菌数的最重要因素。与响应面优化模型相比,ANN-GA模型能够更精确地预测培养基配方对肉葡萄球菌活菌数的影响,误差小且优化效果更好,最佳培养基配方为葡萄糖3.21 g/L、大豆蛋白胨20.17 g/L、牛肉浸粉20.17 g/L、磷酸氢二钾5.63 g/L、氯化钠5.0 g/L、七水硫酸镁0.2 g/L。在5 L发酵罐水平小试最大活菌数可达1.67×10^(10)CFU/mL。 展开更多
关键词 肉葡萄球菌 高密度培养基 响应面法 人工神经网络 遗传算法 优化
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
16
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 bp神经网络 粒子群优化 参数优化 适应度函数
在线阅读 下载PDF
基于BP神经网络的整株秸秆还田装置多目标参数优化——以1ZT-210还田机为例
17
作者 董志贵 张庆柱 +1 位作者 刘理 杨天一 《农机化研究》 北大核心 2025年第7期52-58,共7页
为解决整株秸秆还田装置多目标参数优化时拟合误差精度差和多目标优化准确性低等缺陷,提出了一种高精度和高稳定性的基于BP神经网络的多目标优化方法。以1ZT-210型水稻整株秸秆还田装置为研究对象,选取机具前进速度、刀辊转速为试验因素... 为解决整株秸秆还田装置多目标参数优化时拟合误差精度差和多目标优化准确性低等缺陷,提出了一种高精度和高稳定性的基于BP神经网络的多目标优化方法。以1ZT-210型水稻整株秸秆还田装置为研究对象,选取机具前进速度、刀辊转速为试验因素,以及还田机作业功耗和秸秆还田率为影响指标,以二次正交旋转组合试验数据为训练样本,获得作业功耗和秸秆还田率与影响因素的BP神经网络模型。最佳参数组合:机具前进速度1.20 km/h、刀辊转速225 r/min时,还田装置的作业功耗最小值为12.43 kW,秸秆还田率最大值为93.25%;试验条件下还田机最小作业功耗优于回归分析法所得最小功耗14.32 kW,秸秆还田率优于回归分析法所得最大还田率93.14%。以BP神经网络优化结果进行验证试验,测得作业功耗为12.68 kW,与BP神经网络优化结果绝对误差为0.25 kW,相对误差为2.01%;秸秆还田率为93.13%,与BP神经网络优化结果绝对误差为-0.12%,相对误差为0.13%。试验结果表明:该优化方法实用性强,拟合精度高,优化结果准确稳定,为解决农业工程领域中类似优化问题提供了一种新方法。 展开更多
关键词 整株秸秆 还田装置 bp神经网络 参数优化
在线阅读 下载PDF
基于ACO-BP神经网络的储能电源上壳件气辅成型工艺参数优化
18
作者 杨明 刘赛 +3 位作者 刘巨保 李峰 姚建锋 刘厚德 《工程塑料应用》 北大核心 2025年第4期101-107,共7页
以某储能电源上壳件为研究对象,为提高气辅成型效果,运用Moldflow软件进行气辅成型数值模拟。以气体穿透体积和最大翘曲变形量为优化指标设计了正交试验,利用Critic权重法确定权重占比,通过计算综合评分将双目标优化转化为单目标优化;... 以某储能电源上壳件为研究对象,为提高气辅成型效果,运用Moldflow软件进行气辅成型数值模拟。以气体穿透体积和最大翘曲变形量为优化指标设计了正交试验,利用Critic权重法确定权重占比,通过计算综合评分将双目标优化转化为单目标优化;建立工艺参数与综合评分之间的BP神经网络模型,利用蚁群算法(ACO)进行全局寻优。结果表明,当熔体预注射量为93%、熔体温度为270℃、模具温度为87.78℃、延迟时间为3.5 s、气体压力为35 MPa、气体注射时间为20 s、冷却时间为179.62 s时,综合评分值最大、工艺方案最优。利用Moldflow软件对最优工艺参数进行验证,结果显示气体穿透体积为10.6975%、最大翘曲变形量为2.169 mm,计算其线性组合得到综合评分为1.0495,与优化算法结果的误差仅为1.1%,并进行试模验证,试模翘曲结果与模流分析结果误差为2.8%,且产品无吹穿、吹破等缺陷,表面质量良好。以上研究结果表明,基于ACO-BP神经网络优化气辅成型工艺参数的技术方法具有可行性。 展开更多
关键词 气体辅助注射成型 数值模拟 参数优化 bp神经网络 蚁群算法
在线阅读 下载PDF
基于粒子群优化的BP神经网络PID的加速度计组件温控算法 被引量:1
19
作者 魏国 朱旭 +3 位作者 高春峰 侯承志 程嘉奕 陈迈伦 《中国惯性技术学报》 北大核心 2025年第4期359-366,共8页
在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提... 在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提出了基于PSO-BPNN-PID控制器,利用粒子群优化算法和反向传播算法对神经网络PID控制器进行离线和在线的连接权值整定,实现石英挠性加速度计组件一体化温度控制算法,满足加速度计组件的自适应智能控制需求。仿真和实验结果表明,所提算法能够显著提升系统的温度稳定性,可实现±0.002℃的温度稳定控制。同时,验证了系统具备快速响应温度变化的能力,能够在短时间内将温度调整至设定值附近,并有效抑制超调现象。此外,实验还模拟了外部扰动情况,验证了系统在面对扰动时能够迅速恢复稳定状态,表现出优越的抗扰动能力,可以满足多种温度环境下的加速度计组件高精度温控应用需求。 展开更多
关键词 石英挠性加速度计 温度控制 粒子群优化算法 bp神经网络
在线阅读 下载PDF
基于改进的灰狼算法优化BP神经网络的入侵检测方法
20
作者 彭庆媛 王晓峰 +3 位作者 唐傲 华盈盈 何飞 刘建平 《现代电子技术》 北大核心 2025年第13期96-104,共9页
当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改... 当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改进的灰狼算法优化BP神经网络的入侵检测方法。改进的灰狼算法通过改变线性控制参数,以及在灰狼位置更新公式中加入反余切惯性权重策略,以扩展狼群的搜索范围,从而避免陷入局部最优解。利用改进的算法优化BP神经网络的初始权值和阈值,将优化的BP神经网络应用于入侵检测。实验结果表明,改进的灰狼算法具有更好的稳定性、寻优效率和寻优精度,改进的入侵检测方法不易陷入局部极小值,泛化能力强,预测精度高和可靠性好。 展开更多
关键词 非线性控制参数 惯性权重 灰狼优化算法 bp神经网络 入侵检测 网络安全
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部