期刊文献+
共找到1,026篇文章
< 1 2 52 >
每页显示 20 50 100
遗传优化神经网络方法在桥梁震害预测中的应用 被引量:9
1
作者 柳春光 张利华 《地震工程与工程振动》 CSCD 北大核心 2008年第1期139-145,共7页
本文将遗传算法与神经网络相结合,从而建立了一种高效的、实用的桥梁震害预测方法。根据遗传算法具有局部寻优的特点,为避免BP神经网络陷入局部极小值,本文将二者结合起来形成GA-BP混合算法,以GA优化神经网络的初始权值和阈值,对网络进... 本文将遗传算法与神经网络相结合,从而建立了一种高效的、实用的桥梁震害预测方法。根据遗传算法具有局部寻优的特点,为避免BP神经网络陷入局部极小值,本文将二者结合起来形成GA-BP混合算法,以GA优化神经网络的初始权值和阈值,对网络进行训练。在大量收集梁式桥震害资料的基础上,将此算法引入桥梁的震害预测中,并与传统的单独BP神经网络相比较,结果表明该方法能够有效、准确地对桥梁结构进行震害预测。 展开更多
关键词 桥梁震害 震害预测 遗传算法 神经网络 遗传优化神经网络方法
在线阅读 下载PDF
利用非支配排序遗传算法优化卷积神经网络研究节点地震仪RFID测距
2
作者 庞聪 林春晓 +3 位作者 李忠亚 江勇 陈国庆 宋莹莹 《大地测量与地球动力学》 北大核心 2025年第10期1079-1084,共6页
针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)... 针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)的2个优化目标函数,其自变量统一为学习率下降因子、初始学习率、批大小等一维卷积神经网络(1D-CNN)超参数,因变量分别为网络预测结果与理论值的决定系数(R^(2))和平均偏差误差(MBE);最后以最佳超参数值构成NSGAⅢ-1D-CNN新模型,以提高RFID测距模型的稳定性和精确度。实验结果表明,新模型在100轮循环实验下的节点地震仪RFID测距误差较小,在R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、MBE等多个指标上均表现优异,均值分别为0.9779、0.0586 m、0.0472 m、-0.0013 m,相对于其他模型具有更高的测距定位精度,在野外物探中具有一定应用价值。 展开更多
关键词 节点地震仪 RFID测距 一维卷积神经网络 超参数优化 非支配排序遗传算法 多目标优化
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
3
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于BP神经网络和遗传算法的铜-铝双层药型罩结构优化设计
4
作者 李伟芾 高绪杰 +2 位作者 常征 朱立华 朱光明 《兵器装备工程学报》 北大核心 2025年第8期89-95,共7页
为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性... 为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性。同时,构建了BP人工神经网络模型,并将预测值作为适应度,使用遗传算法以侵彻深度为优化目标得到对应的最佳结构参数。研究结果表明:当药型罩锥角为59.07°,壁厚为1.66 mm,长径比为1.36,Cu/Al壁厚比为2.38∶1时,形成的射流侵彻深度相较正交试验优化结果更好。 展开更多
关键词 双层药型罩 BP神经网络 遗传算法 结构优化 数值模拟
在线阅读 下载PDF
基于人工神经网络耦联遗传算法优化肉葡萄球菌高密度培养基配方
5
作者 王仪 祝超智 +4 位作者 白雪原 郑飏衣 张新军 仝林 赵改名 《肉类研究》 北大核心 2025年第5期1-9,共9页
为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algo... 为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algorithm,ANN-GA)模型。结果表明,氮源是影响肉葡萄球菌活菌数的最重要因素。与响应面优化模型相比,ANN-GA模型能够更精确地预测培养基配方对肉葡萄球菌活菌数的影响,误差小且优化效果更好,最佳培养基配方为葡萄糖3.21 g/L、大豆蛋白胨20.17 g/L、牛肉浸粉20.17 g/L、磷酸氢二钾5.63 g/L、氯化钠5.0 g/L、七水硫酸镁0.2 g/L。在5 L发酵罐水平小试最大活菌数可达1.67×10^(10)CFU/mL。 展开更多
关键词 肉葡萄球菌 高密度培养基 响应面法 人工神经网络 遗传算法 优化
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
6
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进PSO算法 BP神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于神经网络和遗传算法的机器人加工工艺优化
7
作者 吴福森 《金刚石与磨料磨具工程》 北大核心 2025年第2期256-265,共10页
以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模... 以KUKAKR60L30HA型工业机器人加工砂岩为例,基于BP神经网络和遗传算法进行机器人加工磨削力的预测和磨削工艺参数的优化。首先,采用正交试验法,分析加工工艺参数对磨削力信号的影响规律;其次,采用BP神经网络进行机器人加工磨削力预测模型训练并进行预测;最后,采用遗传算法对磨削加工工艺参数进行优化。结果表明:磨削工艺参数对3个磨削力分量和磨削合力的影响主次顺序不同,基本上都随径向切深a_(e)、轴向切深a_(p)、进给速度v_(w)的增加呈增长趋势,随主轴转速n的增加呈下降趋势;基于BP神经网络建立的预测模型具有较好的预测精度和稳定性,符合预测要求;同时,采用遗传算法得到的优化磨削工艺参数组合是a_(e)=2.28 mm,a_(p)=2.98 mm,n=9586.65 r/min,v_(w)=2207.67 mm/min,此时的材料去除率预测值_(RMRRP)=14999.79 mm^(3)/min,材料去除率试验值R_(MRRT)=14194.44 mm^(3)/min,试验值相对预测值的相对误差为-5.37%。 展开更多
关键词 机器人加工 正交试验 BP神经网络 遗传算法 工艺参数优化
在线阅读 下载PDF
基于有限元和神经网络方法的弹簧触指结构优化设计
8
作者 苏俊天 淡淑恒 《高压电器》 北大核心 2025年第3期176-183,共8页
针对电气设备常见的电连接器——弹簧触指结构,提出了一种优化弹簧触指结构参数的方法。首先运用仿真软件Comsol Multiphysics建立弹簧触指结构模型,利用有限元方法进行接触压力和接触电阻计算,分析了簧丝直径、弹簧倾斜角、宽高比、弹... 针对电气设备常见的电连接器——弹簧触指结构,提出了一种优化弹簧触指结构参数的方法。首先运用仿真软件Comsol Multiphysics建立弹簧触指结构模型,利用有限元方法进行接触压力和接触电阻计算,分析了簧丝直径、弹簧倾斜角、宽高比、弹簧圈数对性能参数的影响。以接触压力和接触电阻作为目标函数,利用遗传算法改进的BP神经网络模型,拟合了弹簧触指结构参数与目标函数之间的关系,从而对弹簧触指结构进行优化设计。在满足弹簧触指结构插拔力要求的条件下,减小弹簧触指结构的接触电阻,降低工作温度,改善了其电接触性能。文中提出的优化方法克服了单一变量法计算量大、计算时间长的缺点,可为弹簧触指结构的设计提供新思路。 展开更多
关键词 弹簧触指结构 有限元法 结构优化 遗传算法 神经网络
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
9
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于BP神经网络——遗传算法的咖啡壳炭化工艺参数优化
10
作者 张霞 苏盼杰 +2 位作者 朱静哲 王伊洋 黄峻伟 《智能化农业装备学报(中英文)》 2025年第1期51-58,共8页
生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备... 生物炭是一种针对生物质能高效开发的多功能材料,随着对生物质能高效开发的关注,生物炭的应用范围逐渐扩展,其中炭基肥作为生物炭的一个重要应用方向,因其优良的缓释性能和对土壤负担小的特点,受到广泛关注。生物炭的理化性质受到制备过程中的炭化温度、炭化时间和升温速率等工艺参数的显著影响,不同炭化工艺不仅决定了生物炭的理化性质,还直接影响其作为炭基肥的缓释性能。传统的实验方法往往需要大量的时间和资源投入,因此,探索更加高效的优化方法成为了研究的热点。本研究采用了BP神经网络与遗传算法相结合的优化方法,针对咖啡壳生物炭的炭化过程中的炭化温度、炭化时间和升温速率3个关键工艺参数进行预测和优化。研究结果表明,采用BP神经网络—遗传算法优化后的炭基肥,其最佳工艺参数为炭化时间2.8 h、炭化温度780.7℃和升温速率15.1℃/min。在此工艺条件下制备的咖啡壳生物炭基肥,其7 d养分累计释放率为45.9%,表明缓释性能得到了显著提升。综上所述,本研究提出了一种基于BP神经网络和遗传算法的生物炭炭化工艺参数优化方法,能够有效提高炭基肥的缓释性能。该方法不仅为生物炭制备工艺的优化提供了新的技术路径,也为相关领域的研究提供了重要参考,对推动高性能炭基肥的发展具有积极意义。 展开更多
关键词 生物炭 BP神经网络 遗传算法 炭基肥 工艺参数优化
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
11
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 PSO-BP神经网络 遗传算法
在线阅读 下载PDF
融合卷积神经网络的城轨列车运行计划优化
12
作者 叶建斌 李超 +2 位作者 肖琼 唐金金 王忠有 《科学技术与工程》 北大核心 2025年第27期11793-11799,共7页
城市轨道交通作为重要的公共交通方式,需在满足乘客出行需求的同时,降低能源消耗成本。为同时满足乘客出行效率与企业能源成本控制的双重目标,综合考虑列车发车间隔、载客定员及客流量等约束条件,构建了基于乘客需求与企业利益的列车运... 城市轨道交通作为重要的公共交通方式,需在满足乘客出行需求的同时,降低能源消耗成本。为同时满足乘客出行效率与企业能源成本控制的双重目标,综合考虑列车发车间隔、载客定员及客流量等约束条件,构建了基于乘客需求与企业利益的列车运行优化模型。针对该优化模型,提出了一种卷积神经网络增强遗传算法。案例的计算结果表明卷积神经网络增强遗传算法比传统的遗传算法求解速度更快,且更不容易陷入局部最优。利用本文提出的模型和算法优化后的出行时间减少了10.21%,能耗降低了5.13%。研究结果为城市轨道交通时刻表优化提供了有效的理论依据,能够在降低企业能耗成本和减少乘客出行时间方面发挥作用,在提升交通运输系统效率和节约资源消耗方面具有重要意义。 展开更多
关键词 城市轨道交通 节能 时刻表优化 卷积神经网络增强遗传算法
在线阅读 下载PDF
基于多层进化神经网络的立式振动式滚磨光整关系模型构建及工艺参数优化
13
作者 张燎原 李文辉 +4 位作者 温学杰 张演 李秀红 王海珠 杨胜强 《表面技术》 北大核心 2025年第16期131-140,共10页
目的构建高精度立式振动式滚磨光整加工工艺参数的关系模型,实现工艺参数优化。方法以TC4钛合金板材为试件开展正交实验,通过方差分析获取各工艺参数对表面粗糙度下降率的影响程度。将工艺参数作为输入,表面粗糙度下降率作为输出,通过... 目的构建高精度立式振动式滚磨光整加工工艺参数的关系模型,实现工艺参数优化。方法以TC4钛合金板材为试件开展正交实验,通过方差分析获取各工艺参数对表面粗糙度下降率的影响程度。将工艺参数作为输入,表面粗糙度下降率作为输出,通过数学回归以及神经网络的方法构建初始工艺参数关系模型。通过迭代训练隐含层确定神经网络的最优隐含层结构,采用遗传算法(GA)优化网络权重和偏置,构建多层进化神经网络(GA-MLP)关系模型,进一步将关系模型耦合遗传算法实现工艺参数优化。结果采用数学回归与传统神经网络构建的工艺参数关系模型预测精度为75.6%和76.4%,基于多层进化神经网络构建的关系模型预测精度可提升至96.6%。优化后的加工参数为振动频率25 Hz、偏心块相位差98°、上偏心块质量1.55 kg、下偏心块质量1.8 kg,在此工艺参数下加工可将试件表面粗糙度由0.976μm降低至0.311μm,表面粗糙度下降率达68.12%。结论提出的多层进化神经网络相较于传统的数学回归以及初始神经网络具有更高的预测精度,优化的工艺参数能够有效降低试件表面粗糙度并提升其下降率。研究结果为立式振动式滚磨光整加工工艺参数关系模型构建与参数优化提供了新的方法。 展开更多
关键词 立式振动式滚磨光整 工艺参数关系模型 神经网络 遗传算法 参数优化
在线阅读 下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:7
14
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
在线阅读 下载PDF
基于神经网络的滤波天线单元优化技术研究
15
作者 陈俊达 武杰 +3 位作者 赵加宁 卢佩 杨若洋 张海川 《现代电子技术》 北大核心 2025年第15期6-10,共5页
在滤波天线单元的设计中,由于涉及多维参数优化,传统的电磁仿真方法不仅求解速度较慢,而且难以在复杂的参数空间中快速找到全局最优解,这在一定程度上限制了设计的精度和性能提升。为解决这些问题,文中提出一种结合正向预测与逆向优化... 在滤波天线单元的设计中,由于涉及多维参数优化,传统的电磁仿真方法不仅求解速度较慢,而且难以在复杂的参数空间中快速找到全局最优解,这在一定程度上限制了设计的精度和性能提升。为解决这些问题,文中提出一种结合正向预测与逆向优化设计的方法。该方法利用神经网络对天线单元的性能进行预测,并结合遗传算法在多参数空间中对滤波天线单元进行全局优化。仿真计算结果显示,优化后单元S21参数在通带11.5~16.5 GHz的平均值提高了82.65%,并具有均匀的带内响应。此外,S21在中心频率14 GHz的传输幅值的平均值优化后提升了87.5%,显著提升了传输幅度,并使传输相移更加线性。优化后仿真结果表明,这些改进显著提升了天线的整体性能,尤其是在传输效率、频率响应方面的改善,为滤波天线的进一步发展提供了有价值的参考和借鉴。 展开更多
关键词 神经网络 遗传算法 正向预测 逆向优化 滤波天线 S参数
在线阅读 下载PDF
基于贝叶斯正则化神经网络的卡车轮罩横梁注塑工艺多目标优化
16
作者 张晗 王明伟 +3 位作者 蔡世铭 王宗强 于峻伟 叶星辉 《工程塑料应用》 北大核心 2025年第10期95-103,共9页
以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本... 以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本,利用Moldex3D模流分析软件进行模拟。利用贝叶斯正则化神经网络(BRNN)建立Y1和Y2的回归预测模型,这两个模型的决定系数(R^(2))分别为0.991和0.989;通过非支配排序遗传算法II(NSGA-II)对模型进行多目标优化,得到最优试验变量参数。将最优试验变量参数在Moldex3D中进行模拟和现场实际应用,发现对于Y1和Y2,模拟结果与BRNN-NSGA-II预测的最优结果之间的误差分别为0.14%和7.28%,与初始模拟结果相比分别降低了3.16%和64.42%;实际塑件成型质量良好,满足生产要求。上述结果表明提出的BRNN结合NSGA-II的方法可有效解决大型复杂塑件的注塑工艺多目标优化问题。 展开更多
关键词 注塑 多目标优化 卡车轮罩横梁 最优拉丁超立方试验 贝叶斯正则化神经网络 非支配排序遗传算法II(NSGA-II)
在线阅读 下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别 被引量:2
17
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络
在线阅读 下载PDF
基于反向传播神经网络和遗传算法的新鲜Halloumi奶酪生产工艺优化 被引量:1
18
作者 孙嘉 郑远荣 +3 位作者 刘振民 张娟 徐杏敏 贾向飞 《食品与发酵工业》 CSCD 北大核心 2024年第1期133-140,I0004-I0006,共11页
为提升Halloumi奶酪品质,采用反向传播神经网络和遗传算法优化Halloumi奶酪生产过程的多工艺参数。选取CaCl_(2)添加量、热烫温度和压榨压强为优化变量,以成品奶酪得率和感官评分为优化目标,分别建立了2个神经网络模型,模型精度分别达到... 为提升Halloumi奶酪品质,采用反向传播神经网络和遗传算法优化Halloumi奶酪生产过程的多工艺参数。选取CaCl_(2)添加量、热烫温度和压榨压强为优化变量,以成品奶酪得率和感官评分为优化目标,分别建立了2个神经网络模型,模型精度分别达到了98.936%和98.255%。之后,通过遗传算法进行寻优,结果表明,在得率≥10%以及感官评分≥85的前提下,以奶酪得率为目标的最优生产工艺条件:CaCl_(2)添加量0.0144%、热烫温度83.5℃、压榨压强5.12 kPa,该条件下最高得率为12.01%。以感官品质为目标的最优生产工艺条件:CaCl_(2)添加量0.0171%、热烫温度83.7℃、压榨压强10.38 kPa,该条件下最高感官评分为94.5。该方法能够有效实现Halloumi奶酪生产工艺的快速优化,为促进Halloumi奶酪工业化提供理论基础。 展开更多
关键词 新鲜奶酪 Halloumi奶酪 神经网络 遗传算法 工艺优化
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
19
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(WOA) BP神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于BP人工神经网络与遗传算法的航速优化 被引量:1
20
作者 陈映彬 文逸彦 +2 位作者 董国祥 屠海洋 张焱飞 《舰船科学技术》 北大核心 2024年第1期82-87,共6页
为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本... 为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本满足工程应用要求。最后,利用遗传算法,并基于历史气象数据对目标船舶的航线做分段航速优化。计算结果表明,航速优化后目标船舶的航行时长不仅能减少1.35天,燃油损耗还可节省10.1%,由此说明对航行船舶做分段航速优化是一种可行方案。 展开更多
关键词 BP神经网络 遗传算法 油耗模型 航速优化
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部