期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
多变量解耦鲁棒控制的遗传优化方法 被引量:2
1
作者 薛福珍 韩怀中 《中国科学技术大学学报》 CAS CSCD 北大核心 2001年第6期721-726,共6页
提出一种基于遗传算法的鲁棒准优势化算法 .该算法将鲁棒对角优势和遗传算法相结合 ,综合考虑各摄动系统的关联性 ,搜寻最优的鲁棒解耦控制器 .用该算法对一参数不确定性工业对象进行了鲁棒系统设计 ,结果表明该设计方法比多模型加权准... 提出一种基于遗传算法的鲁棒准优势化算法 .该算法将鲁棒对角优势和遗传算法相结合 ,综合考虑各摄动系统的关联性 ,搜寻最优的鲁棒解耦控制器 .用该算法对一参数不确定性工业对象进行了鲁棒系统设计 ,结果表明该设计方法比多模型加权准优势化算法具有更好的鲁棒稳定性和鲁棒性能 。 展开更多
关键词 遗传 鲁棒对角优势 多变量解耦鲁棒控制 参数不确定性 遗传优化法 鲁棒系统 设计 工业加热炉
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
2
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm 被引量:8
3
作者 XU Fei-xiang LIU Xin-hui +2 位作者 CHEN Wei ZHOU Chen CAO Bing-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2340-2353,共14页
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of... Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness. 展开更多
关键词 steer-by-wire system emergency rescue vehicle fractional order proportional-integral-derivative(FOPID)controller parameter optimization genetic algorithm
在线阅读 下载PDF
Rotation forest based on multimodal genetic algorithm 被引量:2
4
作者 XU Zhe NI Wei-chen JI Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1747-1764,共18页
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu... In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer. 展开更多
关键词 ensemble learning decision tree multimodal optimization genetic algorithm
在线阅读 下载PDF
Optimization of actuator/sensor position of multi-body system with quick startup and brake 被引量:3
5
作者 唐华平 唐春喜 殷陈锋 《Journal of Central South University of Technology》 EI 2007年第6期803-807,共5页
A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric... A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization. 展开更多
关键词 actuator/sensor multi-body system active control OPTIMIZATION genetic algorithm
在线阅读 下载PDF
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
6
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm CHAOS genetic algorithm optimization efficiency
在线阅读 下载PDF
Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm 被引量:10
7
作者 周杰 卓芳 +1 位作者 黄磊 罗艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3287-3295,共9页
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen... To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure. 展开更多
关键词 stamping forming HEADS finite element analysis central composite experimental design response surface methodology multi-objective genetic algorithm
在线阅读 下载PDF
Optimization of assembly line balancing using genetic algorithm 被引量:6
8
作者 N.Barathwaj P.Raja S.Gokulraj 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3957-3969,共13页
In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T... In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly). 展开更多
关键词 OPTIMIZATION line balancing genetic algorithm product family assembly line
在线阅读 下载PDF
Integration optimization of novel electric power steering system based on quality engineering theory 被引量:4
9
作者 赵万忠 赵婷 +3 位作者 李怿骏 王春燕 张宗强 段婷婷 《Journal of Central South University》 SCIE EI CAS 2013年第6期1519-1526,共8页
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel... The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system. 展开更多
关键词 vehicle engineering electric power steering active front steering road feel genetic algorithm
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
10
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Optimizing bus services with variable directional and temporal demand using genetic algorithm 被引量:4
11
作者 瞿何舟 CHIEN Steven I-Jy +2 位作者 刘晓波 张培桐 BLADIKAS Athanassios 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1786-1798,共13页
As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost ... As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services. 展开更多
关键词 bus transit COST travel time service patterns optimization genetic algorithm
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
12
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm 被引量:8
13
作者 朱剑锋 陈昌富 《Journal of Central South University》 SCIE EI CAS 2014年第1期387-397,共11页
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and... A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering. 展开更多
关键词 SLOPE STABILITY genetic algorithm tabu search algorithm safety factor
在线阅读 下载PDF
Adaptive bands filter bank optimized by genetic algorithm for robust speech recognition system 被引量:5
14
作者 黄丽霞 G.Evangelista 张雪英 《Journal of Central South University》 SCIE EI CAS 2011年第5期1595-1601,共7页
Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher acc... Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results. 展开更多
关键词 perceptual filter banks bark scale speaker independent speech recognition systems zero-crossing peak amplitude genetic algorithm
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
15
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
16
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
17
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
Scheme optimization of AT shifting element based on genetic algorithm
18
作者 岳会军 刘艳芳 +2 位作者 马明月 徐向阳 王书翰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期539-545,共7页
In order to realize the computer aided design of AT shifting element schemes, a mathematical model of shifting element schemes which can be easily identified by computers was built. Taking the transmission ratio seque... In order to realize the computer aided design of AT shifting element schemes, a mathematical model of shifting element schemes which can be easily identified by computers was built. Taking the transmission ratio sequence as an optimization objective and simple shifting logic between adjacent gears through operating only one shifting element as a constraint condition, a fitness function of shifting element schemes was proposed. ZF-8AT shifting element schemes were optimized based on GA work-box of MATLAB, and the feasibility of the optimization algorithm was verified. 展开更多
关键词 hydrodynamic automatic transmission shifting element scheme optimization
在线阅读 下载PDF
Adaptive template filter method for image processing based on immune genetic algorithm 被引量:1
19
作者 谭冠政 吴建华 +1 位作者 范必双 江斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期1028-1035,共8页
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona... To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments. 展开更多
关键词 image characteristic template match adaptive template filter wavelet transform elitist selection elitist crossover immune genetic algorithm
在线阅读 下载PDF
Hybrid optimization model of product concepts
20
作者 薛立华 李永华 《Journal of Central South University of Technology》 EI 2006年第1期105-109,共5页
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating... Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms. 展开更多
关键词 conceptual design morphological matrix genetic algorithm neural network hybrid optimization model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部