A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of...Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.展开更多
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu...In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.展开更多
A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric...A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.展开更多
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co...By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T...In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).展开更多
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel...The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost ...As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and...A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.展开更多
Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher acc...Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.展开更多
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo...In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.展开更多
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis...To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
In order to realize the computer aided design of AT shifting element schemes, a mathematical model of shifting element schemes which can be easily identified by computers was built. Taking the transmission ratio seque...In order to realize the computer aided design of AT shifting element schemes, a mathematical model of shifting element schemes which can be easily identified by computers was built. Taking the transmission ratio sequence as an optimization objective and simple shifting logic between adjacent gears through operating only one shifting element as a constraint condition, a fitness function of shifting element schemes was proposed. ZF-8AT shifting element schemes were optimized based on GA work-box of MATLAB, and the feasibility of the optimization algorithm was verified.展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating...Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.展开更多
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
基金Project(2016YFC0802904)supported by the National Key Research and Development Program of China
文摘Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.
基金Project(61603274)supported by the National Natural Science Foundation of ChinaProject(2017KJ249)supported by the Research Project of Tianjin Municipal Education Commission,China。
文摘In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.
基金Project(60874114) supported by the National Natural Science Foundation of China
文摘By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
基金support and help of many individuals in the SASTRA University
文摘In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).
基金Projects(51005115,51205191)supported by the National Natural Science Foundation of ChinaProject(QC201101)supported by the Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province,China+1 种基金Project(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,ChinaProjects(NS2013015,NS2012086)supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics,and NUAA Research Funding,China
文摘The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金Project(B01B1203)supported by Sichuan Province Key Laboratory of Comprehensive Transportation,ChinaProject(SWJTU09BR141)supported by the Southwest Jiaotong University,China
文摘As a major mode choice of commuters for daily travel, bus transit plays an important role in many urban and metropolitan areas. This work proposes a mathematical model to optimize bus service by minimizing total cost and considering a temporally and directionally variable demand. An integrated bus service, consisting of all-stop and stop-skipping services is proposed and optimized subject to directional frequency conservation, capacity and operable fleet size constraints. Since the research problem is a combinatorial optimization problem, a genetic algorithm is developed to search for the optimal result in a large solution space. The model was successfully implemented on a bus transit route in the City of Chengdu, China, and the optimal solution was proved to be better than the original operation in terms of total cost. The sensitivity of model parameters to some key attributes/variables is analyzed and discussed to explore further the potential of accruing additional benefits or avoiding some of the drawbacks of stop-skipping services.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.
基金Project(50878082)supported by the National Natural Science Foundation of ChinaProject(2012C21058)supported by the Public Welfare Technology Application Research of Zhejiang Province,China
文摘A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(20093048) supported by Shanxi ProvincialGraduate Innovation Fund of China
文摘Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.
文摘In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.
基金Project(2012B091100444)supported by the Production,Education and Research Cooperative Program of Guangdong Province and Ministry of Education,ChinaProject(2013ZM0091)supported by Fundamental Research Funds for the Central Universities of China
文摘To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金Project(2011BAG09B00)supported by the National Science and Technology Support Program,China
文摘In order to realize the computer aided design of AT shifting element schemes, a mathematical model of shifting element schemes which can be easily identified by computers was built. Taking the transmission ratio sequence as an optimization objective and simple shifting logic between adjacent gears through operating only one shifting element as a constraint condition, a fitness function of shifting element schemes was proposed. ZF-8AT shifting element schemes were optimized based on GA work-box of MATLAB, and the feasibility of the optimization algorithm was verified.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.
文摘Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.