期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于密集连接卷积神经网络的道路车辆检测与识别算法 被引量:6
1
作者 邓天民 冒国韬 +1 位作者 周臻浩 段志坚 《计算机应用》 CSCD 北大核心 2022年第3期883-889,共7页
针对现有道路车辆检测识别算法中存在的检测精度不高、实时性差以及小目标车辆漏检等问题,提出一种基于密集连接卷积神经网络的道路车辆检测与识别算法。首先,基于YOLOv4网络框架,通过采用密集连接的深度残差网络结构,加强特征提取阶段... 针对现有道路车辆检测识别算法中存在的检测精度不高、实时性差以及小目标车辆漏检等问题,提出一种基于密集连接卷积神经网络的道路车辆检测与识别算法。首先,基于YOLOv4网络框架,通过采用密集连接的深度残差网络结构,加强特征提取阶段的特征复用,实现对浅层复杂度较低的特征的利用;然后,在多尺度特征融合网络引入跳跃连接结构,强化网络的特征信息融合和表征能力,以降低车辆漏检率;最后,采用维度聚类算法重新计算先验框尺寸,并按照合理的策略分配给不同检测尺度。实验结果表明,该算法在KITTI数据集上获得了98.21%的检测精度和48.05 frame/s的检测速度,对于BDD100K数据集中复杂恶劣环境中的车辆也有较好的检测效果,在满足实时检测要求的同时有效提升检测精度。 展开更多
关键词 智能交通 道路车辆检测 YOLOv4 密集连接网络 多尺度特征融合
在线阅读 下载PDF
基于分道线的道路云台摄像机参数自动标定 被引量:2
2
作者 吴建平 陈珂 刘业 《计算机工程与设计》 北大核心 2021年第7期2069-2076,共8页
为实现基于道路视频摄像机视频处理的运动车辆精确测速,提出基于分道线长度、车道宽度和分道线消失点的道路云台摄像机参数自动标定方法,以对摄像机焦距、俯仰角、旋转角、离地高度等参数进行自动标定。实验结果表明,在应用于基于视频... 为实现基于道路视频摄像机视频处理的运动车辆精确测速,提出基于分道线长度、车道宽度和分道线消失点的道路云台摄像机参数自动标定方法,以对摄像机焦距、俯仰角、旋转角、离地高度等参数进行自动标定。实验结果表明,在应用于基于视频处理的运动车辆速度检测时,所提方法与雷达测速在平均误差以及误差标准差方面远小于我国公路测速允许的误差上限,验证了方法的准确性和有效性。 展开更多
关键词 道路摄像机参数标定 云台摄像机参数标定 智能交通系统 道路车辆速度检测 视频检测
在线阅读 下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
3
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部