Based on trajectory planning with maximum velocity and acceleration constraints, a novel high-quality trajectory planning method was proposed for heterogeneous individuals in crowd simulation. The proposed method ensu...Based on trajectory planning with maximum velocity and acceleration constraints, a novel high-quality trajectory planning method was proposed for heterogeneous individuals in crowd simulation. The proposed method ensured that the individual’s path was smooth and its velocity was continuous. Based on the physiological constraints of humans with maximum velocity and acceleration, time-optimal trajectory and feasible region were derived by solving kinodynamic planning problem. Subsequently, a high-quality trajectory planning algorithm was designed to compute the trajectory with appropriate variation of velocity. The simulation results demonstrate that the proposed trajectory planning method has more authenticities and can generate high-quality trajectories for virtual humans in crowd simulation.展开更多
The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are m...The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.展开更多
A numerical case study on the seismic behavior of embankment was carried out based on a prototype of earth embankment in Yun-Gui Railway (from Kunming City to Nanning City) in southwest of China. A full-scale model ...A numerical case study on the seismic behavior of embankment was carried out based on a prototype of earth embankment in Yun-Gui Railway (from Kunming City to Nanning City) in southwest of China. A full-scale model of earth embankment was established by means of numerical simulation with FLAC3D code. The numerical results were verified by shaking table test. The seismic behaviors of earth embankment were studied, including the horizontal acceleration response, the vertical acceleration response, the dynamic displacement response, and the block state of earth embankment. Results show that the acceleration magnification near the embankment slope is larger than that in internal earth embankment body. With the increase of input peak acceleration, the horizontal acceleration magnification presents a decreasing trend. The horizontal acceleration response at the top of embankment is more sensitive to the intensity of ground motion than that at the bottom of cmbankment. The embankment presents an obvious nonlinear-plastic characteristic when the input horizontal peak acceleration is larger than 0.3 g. The maximum residual deformation occurs in the middle of embankment slope surface instead of at the top of embankment. The upper part of embankment experiences tension failure without shear failure, and area at mainly presents shear failure under the earthquake loading. surface of earth embankment. the bottom of embankment around the symmetry-axis of embankment The tension failure and shear failure repeatedly occur along the slope展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
基金Project(1708085QF158)supported by the Natural Science Foundation of Anhui Province,China
文摘Based on trajectory planning with maximum velocity and acceleration constraints, a novel high-quality trajectory planning method was proposed for heterogeneous individuals in crowd simulation. The proposed method ensured that the individual’s path was smooth and its velocity was continuous. Based on the physiological constraints of humans with maximum velocity and acceleration, time-optimal trajectory and feasible region were derived by solving kinodynamic planning problem. Subsequently, a high-quality trajectory planning algorithm was designed to compute the trajectory with appropriate variation of velocity. The simulation results demonstrate that the proposed trajectory planning method has more authenticities and can generate high-quality trajectories for virtual humans in crowd simulation.
基金Projects(11672194,U19A2098)supported by the National Natural Science Foundation of ChinaProject(2018SCU12047)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2018JZ0036)supported by the Project of Science and Technology of Sichuan Province,China。
文摘The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.
基金Project(51308551)supported by the National Natural Science Foundation of ChinaProject(2012M511760)supported by the China Postdoctoral Science FoundationProject(13JJ4017)supported by the Hunan Provincial Natural Science Foundation of China
文摘A numerical case study on the seismic behavior of embankment was carried out based on a prototype of earth embankment in Yun-Gui Railway (from Kunming City to Nanning City) in southwest of China. A full-scale model of earth embankment was established by means of numerical simulation with FLAC3D code. The numerical results were verified by shaking table test. The seismic behaviors of earth embankment were studied, including the horizontal acceleration response, the vertical acceleration response, the dynamic displacement response, and the block state of earth embankment. Results show that the acceleration magnification near the embankment slope is larger than that in internal earth embankment body. With the increase of input peak acceleration, the horizontal acceleration magnification presents a decreasing trend. The horizontal acceleration response at the top of embankment is more sensitive to the intensity of ground motion than that at the bottom of cmbankment. The embankment presents an obvious nonlinear-plastic characteristic when the input horizontal peak acceleration is larger than 0.3 g. The maximum residual deformation occurs in the middle of embankment slope surface instead of at the top of embankment. The upper part of embankment experiences tension failure without shear failure, and area at mainly presents shear failure under the earthquake loading. surface of earth embankment. the bottom of embankment around the symmetry-axis of embankment The tension failure and shear failure repeatedly occur along the slope
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.