The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The e...High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.展开更多
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.
基金Projects(51135003,U1234208)supported by the National Natural Science Foundation of ChinaProject(IRT0816)supported by Program for Changjiang Scholars and Innovative Research Team in University of ChinaProject(N110603001)supported by the Fundamental Research Funds for the Central Universities of China
文摘High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.