期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进RetinaNet模型速冻水饺表面缺陷检测
1
作者 费致根 郭兴 +2 位作者 宋晓晓 鲁豪 赵鑫昌 《食品工业科技》 北大核心 2025年第6期9-19,共11页
目的:提升速冻水饺表面缺陷检测的精度。方法:制作了包含五种冻饺形态(正常、露馅、半饺、破肚、粘连)的数据集,提出了用于速冻水饺表面缺陷检测与定位的网络模型GX-RetinaNet。该模型基于RetinaNet网络改进,主干特征提取网络采用ResNeX... 目的:提升速冻水饺表面缺陷检测的精度。方法:制作了包含五种冻饺形态(正常、露馅、半饺、破肚、粘连)的数据集,提出了用于速冻水饺表面缺陷检测与定位的网络模型GX-RetinaNet。该模型基于RetinaNet网络改进,主干特征提取网络采用ResNeXt-50模型,增强网络特征提取能力,引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)与Swish激活函数有效抑制背景噪声,通过在特征金字塔模块(Feature Pyramid Networks,FPN)后增加PAN结构(Path Aggregation Network)组成双向特征融合模块,可以提升对目标多尺度特征信息的融合能力。结果:GX-RetinaNet网络对工业现场条件下速冻水饺表面缺陷的在线检测精度优于主流的几种目标检测网络,其平均精度均值(mAP)为94.8%,召回率(Recall)为77.0%,F1分数(F1-score)为84.9%。与RetinaNet网络相比,mAP、Recall和F1-score分别提高了2.6%、2.6%、2.4%。结论:GX-RetinaNet网络模型可以满足冻饺表面缺陷检测精度的要求,本研究为深度学习理论在速冻水饺表面缺陷检测方面的应用提供了一种可行的方法。 展开更多
关键词 速冻水饺表面缺陷检测 RetinaNet ResNeXt-50 卷积块注意力模块 双向特征融合模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部