期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度通道重校准的乳腺癌病理图像分类
被引量:
9
1
作者
明涛
王丹
+1 位作者
郭继昌
李锵
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第7期1289-1297,共9页
针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果...
针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果更加准确,提出多尺度通道重校准模型,设计卷积神经网络msSE-ResNet.多尺度特征通过网络中的最大池化层获得并作为后续通道重校准模型的输入,将不同尺度下学到的通道权重进行融合,可以改善通道重校准的结果.该实验在公开数据集BreaKHis上开展.实验结果表明,该网络对良性/恶性乳腺病理图像分类任务达到88.87%的分类精度,可以对不同放大倍数下获取的病理图像具有较好的鲁棒性.
展开更多
关键词
乳腺癌病理图像分类
深度学习
残差网络
多尺度特征
通道重校准模型
在线阅读
下载PDF
职称材料
题名
基于多尺度通道重校准的乳腺癌病理图像分类
被引量:
9
1
作者
明涛
王丹
郭继昌
李锵
机构
天津大学电气自动化与信息工程学院
天津医科大学总医院病理科
天津大学微电子学院
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第7期1289-1297,共9页
基金
国家自然科学基金资助项目(61471263)
天津市自然科学基金资助项目(16JCZDJC31100)。
文摘
针对乳腺癌病理图像的自动分类问题,提出基于深度学习的分类算法.通道重校准模型是作用于特征通道的注意力模型,可以利用学习到的通道权重对无用特征进行抑制来实现对特征通道的重校准,以达到更高的分类准确率.为了使通道重校准的结果更加准确,提出多尺度通道重校准模型,设计卷积神经网络msSE-ResNet.多尺度特征通过网络中的最大池化层获得并作为后续通道重校准模型的输入,将不同尺度下学到的通道权重进行融合,可以改善通道重校准的结果.该实验在公开数据集BreaKHis上开展.实验结果表明,该网络对良性/恶性乳腺病理图像分类任务达到88.87%的分类精度,可以对不同放大倍数下获取的病理图像具有较好的鲁棒性.
关键词
乳腺癌病理图像分类
深度学习
残差网络
多尺度特征
通道重校准模型
Keywords
breast cancer histopathological image classification
deep learning
residual network
multi-scale feature
channel squeeze-and-excitation model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度通道重校准的乳腺癌病理图像分类
明涛
王丹
郭继昌
李锵
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部