期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于梯度可感知通道注意力模块的红外小目标检测前去噪网络 被引量:4
1
作者 林再平 罗伊杭 +5 位作者 李博扬 凌强 郑晴 杨晶贻 刘丽 吴京 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第2期254-260,共7页
红外图像去噪在军事及民用领域应用广泛。现有基于深度学习的图像去噪方法主要为可见光图像设计,此类方法容易过度平滑图像细节,从而导致弱小目标丢失,为后续的检测任务带来困难。为了在去除噪声的同时保留好红外图像中的目标信息,本文... 红外图像去噪在军事及民用领域应用广泛。现有基于深度学习的图像去噪方法主要为可见光图像设计,此类方法容易过度平滑图像细节,从而导致弱小目标丢失,为后续的检测任务带来困难。为了在去除噪声的同时保留好红外图像中的目标信息,本文提出了一种基于梯度可感知通道注意力模块的红外弱小目标检测前去噪网络。该网络首先采用编码器-解码器结构来去除图像中的加性噪声,然后通过梯度可感知通道注意力模块对图像高频区域进行自适应增强,有效保持红外弱小目标的响应强度。此外,本文提出了领域第一个包含3981张含噪声的红外图像数据集。实验结果表明,该网络能够在有效去除加性噪声的同时避免过度平滑,很好地保留了红外图像中的目标信息,最终实现了在含噪声环境下的高鲁棒性红外弱小目标检测。 展开更多
关键词 红外小目标 检测前去噪 梯度可感知通道注意力模块
在线阅读 下载PDF
基于通道注意力机制的小样本SAR飞机图像分类方法 被引量:3
2
作者 赵一铭 王佩瑾 +2 位作者 刁文辉 孙显 邓波 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期464-476,共13页
合成孔径雷达(Synthetic Aperture Radar,SAR)以其全天候、全天时、高分辨率、大幅宽的特点,成为对地观测的重要手段,图像分类是SAR图像解译的一个重要方向.和光学图像相比,SAR图像的成像机理较复杂,存在较多噪声干扰,导致图像清晰度较... 合成孔径雷达(Synthetic Aperture Radar,SAR)以其全天候、全天时、高分辨率、大幅宽的特点,成为对地观测的重要手段,图像分类是SAR图像解译的一个重要方向.和光学图像相比,SAR图像的成像机理较复杂,存在较多噪声干扰,导致图像清晰度较差、样本标注的难度大,无法保证深度学习算法对样本量的需求,因此,对小样本SAR图像进行图像分类成为当前SAR图像解译领域的重点研究问题之一.基于这一问题展开了基于元学习的SAR图像分类模型的研究,以实现小样本条件下SAR图像的高精度识别.构建基于注意力机制的原型网分类方法,设计了通道注意力模块来自动获取图像特征的重要程度,促进提取对图像分类更有判别力的特征;同时,对模型设计预训练网络,以充分利用已有数据的信息,学习更好的先验信息,提高分类的准确率.在自建的高分辨率SAR图像数据集上对该小样本分类模型进行了实验.消融实验表明,注意力模块和预训练模块对模型的性能均有一定的提升效果.通过对比实验,证明和当前常用的小样本学习方法相比,构建的分类方法能在SAR图像分类中获得较高的准确率,在第一组实验的5-way 1-shot实验中得到的分类精度提高了5.9%,在5-way 5-shot实验中提高了1.92%. 展开更多
关键词 SAR图像分类 元学习 小样本学习 通道注意力模块 预训练
在线阅读 下载PDF
基于混合注意力生成对抗网络的遥感图像去雾方法
3
作者 马六 毛克彪 郭中华 《智慧农业(中英文)》 2025年第2期172-182,共11页
[目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提... [目的/意义]近年来,深度学习在遥感图像去雾领域取得了显著进展,尤其是在引入注意力机制以提升特征学习方面。然而,传统的注意力机制大多依赖全局平均池化,导致模型对特定影响点的敏感性过高,难以有效应对遥感图像中的去雾问题。为了提高去雾技术的效果,满足农业、城市规划等领域对图像质量日益增长的需求,现有方法亟需改进。[方法]本研究提出了一种混合注意力生成对抗网络(Hybrid Attention-Based Generative Adversarial Network,HAB-GAN)。该模型通过结合高效通道注意力模块与空间注意力模块,嵌入生成对抗网络架构中,实现了对遥感图像去雾效果的显著提升。高效通道注意力模块通过降低全局特征聚合中的冗余信息,既保留了性能,又减少了模型复杂度;空间注意力模块则从局部到全局对遥感图像中的雾化区域进行识别和聚焦,增强了对这些区域的恢复能力。这种方法能够更加有效地应对遥感图像中复杂多变的景观,尤其适用于农业等需要高质量遥感数据的领域。[结果与讨论]在RESISC(Remote Sensing Image Scene Classification)45数据集上,与现有的其他注意力机制去雾模型,如SpA GAN和HyA-GAN进行比较,HAB-GAN模型去雾效果更优,其中峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)分别增加了2.64和1.14 dB,结构相似度(Structural Similarity Index,SSIM)分别增加了0.0122和0.0019。此外,消融实验验证了混合注意力机制的有效性,去除HAB模块后,HAB-GAN模型的PSNR下降了3.87 dB,SSIM下降了0.0334。[结论]提出的HAB-GAN模型显著提升了遥感图像的去雾效果,使生成的图像更加接近无雾图像,特别是对于复杂的农业、环境监测等场景具有重要应用价值。HAB模块在提升模型性能方面发挥了关键作用,为未来的遥感图像处理和相关领域提供了有力的技术支持。 展开更多
关键词 遥感图像 深度学习 生成对抗网络 高效通道注意力模块 空间注意力模块 去雾
在线阅读 下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:8
4
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
在线阅读 下载PDF
融合PVTv2和DenseNet121的双注意力视网膜病变分级算法
5
作者 梁礼明 钟奕 +1 位作者 陈康泉 王成斌 《光电工程》 北大核心 2025年第4期15-29,共15页
针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支... 针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支网络,对视网膜图像的全局和局部信息进行初步提取;其次,在PVTv2和DenseNet121输出处分别采用空间通道协同注意力模块和多频率多尺度模块,优化局部特征细节,突显微小病灶特征,增强模型对复杂微小病变特征敏感性和病灶的定位感知;再次设计神经元交叉融合模块,建立病灶区域宏观布局和微观纹理信息之间的远程依赖关系,进而提高视网膜病变分级准确率;最后,利用混合损失函数缓解样本分布不均所导致的各等级之间模型关注度不平衡情况。在IDRID和APTOS 2019数据集上进行实验验证,其二次加权系数分别为90.68%和90.35%,IDRID数据集上的准确率和APTOS 2019数据集ROC曲线下方面积分别为80.58%和93.22%。实验结果表明,所提算法在视网膜病变分级领域具有一定应用价值。 展开更多
关键词 视网膜病变分级 空间通道协同注意力模块 多频率多尺度注意力模块 神经元交叉融合模块
在线阅读 下载PDF
基于注意力机制的艾德莱斯绸纹饰图案分割研究
6
作者 黄凯茜 安娃 《包装工程》 CAS 北大核心 2024年第22期420-426,共7页
目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出... 目的由于艾德莱斯绸具有丰富的色彩和复杂的纹饰图案,在对其进行图案分割时难度较大,容易出现错分割和漏分割的情况。为此,提出了基于注意力机制的艾德莱斯绸纹饰图案分割算法。方法采用FCN模型对艾德莱斯绸纹饰图像进行卷积训练,突出图像的语义特征信息。利用通道注意力模块和位置注意力模块,分别对艾德莱斯绸纹饰图像展开学习,得到维度完全相同的特征图。将两个模块特征图融合后与FCN模型输出图像再次融合,得到艾德莱斯绸纹饰图像的特征提取结果,选取图像中的感兴趣区域,完成对艾德莱斯绸纹饰图案的分割。结论实验结果表明,所提方法取得了精准度较高的分割结果,分割图像边缘清晰,没有出现错分割和漏分割的情况,分割结果总体上较为理想。 展开更多
关键词 注意力机制 艾德莱斯绸纹饰 图案分割 语义特征信息 全卷积神经网络 通道注意力模块
在线阅读 下载PDF
引入ECA注意力机制的U-Net语义分割 被引量:12
7
作者 王瑞绅 宋公飞 王明 《电光与控制》 CSCD 北大核心 2023年第1期92-96,102,共6页
多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Ne... 多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Net。在融合过程中,通过引入超强通道注意力(ECA)模块进一步增强特征表示对场景分割的判别能力。除此之外,在整体网络结构中引入空洞卷积,在不改变卷积核大小的情况下扩大图像的感受野范围,从而最大化地提高网络性能。实验结果表明,在CamVid数据集上,ECAU-Net相较于U-Net在Acc, Acc class, MIoU和FWIoU这4个评价指标上分别提高了2.1%,8.6%,8.2%和3.2%。 展开更多
关键词 语义图像分割 空洞卷积 超强通道注意力模块 U-Net
在线阅读 下载PDF
注意力残差网络的单图像去雨方法研究 被引量:7
8
作者 徐爱生 唐丽娟 陈冠楠 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1281-1285,共5页
恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.... 恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.将注意力模块引入残差模块中,首先利用通道注意力机制自适应学习通道维度上不同特征,然后利用空间注意力机制建立雨条纹的内在关系,之后将注意力模块与残差模块相结合得到注意力残差单元,最后将其堆叠成高性能去雨网络.公开的合成和真实世界图像数据集上的实验表明,本文所提出的方法在视觉上可以大大提高去雨的性能. 展开更多
关键词 单图像去雨 深度残差网络 注意力机制 通道注意力模块 空间注意力模块
在线阅读 下载PDF
基于多重多尺度融合注意力网络的建筑物提取 被引量:8
9
作者 杨栋杰 高贤君 +3 位作者 冉树浩 张广斌 王萍 杨元维 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1924-1934,共11页
针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度... 针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度特征融合注意力(MFA). MECA设计在模型跳跃连接中,通过权重配比强化有效特征信息,避免注意力向无效特征的过渡分配;采用多重特征提取,减少有效特征的损失. MFA被嵌入模型底部,结合并行连续中小尺度空洞卷积与通道注意力,获得不同的空间特征与光谱维度特征,缓解空洞卷积造成的大型建筑物像素缺失问题. MMFA-Net通过融合MECA和MFA,提高了建筑物提取结果的完整度和精确率.将模型在WHU、 Massachusetts和自绘建筑物数据集上进行验证,在定量评价方面优于其他5种对比方法,F_(1)分数和IoU分别达到93.33%、87.50%;85.38%、74.49%和88.46%、79.31%. 展开更多
关键词 深度学习 高分辨遥感影像 建筑物提取 多尺度特征融合 高效通道注意力模块 U-Net
在线阅读 下载PDF
基于注意力和多尺寸卷积的超分辨率算法研究
10
作者 梁超 黄洪全 陈延明 《传感器与微系统》 CSCD 北大核心 2021年第12期85-88,共4页
为了解决深层卷积模型的超分辨率技术计算量大、融合的特征不够全面的问题,模型结构不再从深度上进行加深,而是从宽度上进行扩展。对输入的一张特征图进行多尺寸的卷积处理,在结构上融合残差结构、压缩模块和改进的通道注意力模块,融合... 为了解决深层卷积模型的超分辨率技术计算量大、融合的特征不够全面的问题,模型结构不再从深度上进行加深,而是从宽度上进行扩展。对输入的一张特征图进行多尺寸的卷积处理,在结构上融合残差结构、压缩模块和改进的通道注意力模块,融合多尺寸的特征图的同时灵活运用高、低频信息,最终达到提高重建图像质量的效果。实验结果表明:与目前较为流行的超分辨率算法相比,在参数量上有了一定的减少,且在峰值信噪比和结构相似性上有着良好的表现。 展开更多
关键词 超分辨率 多尺寸卷积 残差结构 通道注意力模块
在线阅读 下载PDF
改进RRPN模型的遥感图像目标检测
11
作者 鲁晓波 郭艳光 辛春花 《现代电子技术》 北大核心 2025年第1期8-16,共9页
针对遥感目标背景复杂、易受外界环境干扰,传统方法无法满足复杂场景下的检测高精度与实时性要求的问题,提出基于改进RRPN模型的遥感图像目标检测方法。首先,将特征金字塔(FPN)架构引入到了模型的残差网络中,使得遥感图像的高、低层特... 针对遥感目标背景复杂、易受外界环境干扰,传统方法无法满足复杂场景下的检测高精度与实时性要求的问题,提出基于改进RRPN模型的遥感图像目标检测方法。首先,将特征金字塔(FPN)架构引入到了模型的残差网络中,使得遥感图像的高、低层特征得到了有效融合;其次,在特征提取网络中添加了通道和空间相融合的注意力机制(CBAM),提升了模型在遥感图像目标特征提取方面的跨通道和空间处理能力;此外,将剔除重叠建议框时的原始NMS算法优化为DIoUNMS算法,综合考虑遥感图像候选框之间的重叠度、距离、尺度大小等因素,使目标框的回归过程更加稳定。对比实验与消融实验显示,所提方法在公共数据集DOTA和HRSC2016上获得的平均精度均值mAP分别可高达77.30%、90.24%,较原始RRPN模型分别提高了8.29%、11.16%,且优于其他几种较新的经典模型,表明所提方法对于复杂环境下的遥感图像目标检测是合理且有效的。 展开更多
关键词 目标检测 遥感图像 带旋转的候选框算法 卷积通道注意力模块 DIoU-NMS 特征金字塔 DOTA HRSC2016数据集
在线阅读 下载PDF
基于Densenet模型的步态相位识别研究 被引量:2
12
作者 付明凯 王少红 马超 《电子测量技术》 北大核心 2025年第1期119-128,共10页
步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位... 步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位识别方法。首先,将两个惯性测量单元布置在胫骨前部和大腿前侧的股直肌,采集了200人次受试者前进、转弯、上楼梯、下楼梯4种步态任务的步态数据。然后,对数据进行滤波重采样预处理后作为所提模型的输入。最后,利用SECBAM-Densenet模型得到输出模型的分类结果。结果显示,改进后SECBAM-Densenet模型在同一个体中不同步态相位平均识别准确率达到了95.76%,相比其他模型有0.66%~21.22%的提升。在不同个体中,相位的识别准确率均高于94%。以上试验结果表明,本文提出的模型可以应用于步态相位识别领域,并为下肢外骨骼机器人的柔性控制提供了试验参考。 展开更多
关键词 步态相位 Densenet SE-net注意力模块 空间通道注意力模块
在线阅读 下载PDF
基于暗区域引导的低照度图像增强
13
作者 汪婉灵 熊邦书 +2 位作者 欧巧凤 余磊 饶智博 《应用科学学报》 北大核心 2025年第2期245-256,共12页
针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不... 针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不过度增强的情况下,重点增强图像曝光不足区域;其次,设计通道注意力模块,提高网络对颜色信息的提取能力,更好地恢复图像颜色,保证颜色自然度;再次,设计全局上下文模块,增加网络全局感知能力,丰富图像细节信息;最后,增强网络融合输入特征和暗区域注意力网络输出特征,实现图像对比度再增强。在6个公共数据集上进行多组对比实验,分别从主观与客观两方面进行性能对比,结果表明所提方法能够有效解决低照度图像存在的颜色失真、细节丢失和曝光不均匀问题,具有较好的视觉增强效果与泛化性。 展开更多
关键词 低照度图像增强 暗区域引导 通道注意力模块 全局上下文模块 深度学习
在线阅读 下载PDF
基于压缩图像与YOLOv5模型的架空输电线路缺陷检测技术 被引量:1
14
作者 刘敏 姜亮 +2 位作者 田杨阳 张璐 陈岑 《沈阳工业大学学报》 北大核心 2025年第2期152-159,共8页
【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,... 【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,无论何种方式都需要处理大量可视化、红外或者紫外照片。但由于输电线路的特殊性,架设条件涉及多种环境,其巡检图像背景通常较为复杂,采用人工复核审查的方式精度较高,但对经验依赖较大且效率极低。如何快速、准确地识别架空线路巡检图片是架空输电线路缺陷识别的关键。传统输电线路巡检图片识别方法在复杂背景的干扰下,容易出现缺陷识别精确度不高的问题。【方法】为提高架空输电线路巡检图像复杂背景下的检测准确率,提出了一种兼顾识别效率和准确性的缺陷检测方法。基于压缩图像技术并结合YOLOv5模型,设计了一种基于稀疏卷积的非对称特征聚合压缩算法,将原始图像通过编码减少图像存储所需空间以便于存储和传输,经过信息通道传输到解密器后,再将压缩图像进行解码复原以提升局部集合特征的学习效率。同时,通过融入通道空间注意力模块从特征图中得到注意力通道权重矩阵和空间权重矩阵,并通过权重矩阵判断特征图区域的重要程度,完成对YOLOv5模型处理效率的提升。【结果】将压缩恢复后的图像输入改进YOLOv5模型中,利用通道注意力模块(CAM)和空间注意力模块(SAM)分别对图像进行通道与空间上的注意力数据处理,通过全局平均池化和最大池化处理增强目标区域的特征,并引入空间注意力模块增强通道注意力对特征位置信息的关注,以检测出存在缺陷的设备,并通过实验验证了方法的有效性。【结论】以某架空线路的巡检图像数据集为基础,对检测方法开展训练与测试,结果表明,巡检图像经所提技术压缩后,尺寸明显减小,恢复后的图像尺寸较原图约降低了3 MB且未出现失真;改进YOLOv5模型具有较高的检测精确度,其检测准确率和时间分别为0.91和0.87 s,算法在降低图像尺寸提升检测速度的同时保证了检测准确率。 展开更多
关键词 架空输电线路 缺陷检测 图像压缩 改进YOLOv5模型 非对称特征聚合编解码网络 通道空间注意力模块 通道稀疏残差卷积 检测准确率
在线阅读 下载PDF
高光谱成像技术结合深度学习的藕粉识别和掺假检测
15
作者 彭健恒 胡新军 +4 位作者 张嘉洪 田建平 陈满骄 黄丹 罗惠波 《光谱学与光谱分析》 北大核心 2025年第6期1759-1767,共9页
藕粉营养价值高,工艺复杂,一些不法商家受到利益的驱使,利用廉价的普通淀粉冒充藕粉或在藕粉中掺入普通淀粉。传统的藕粉真伪检查方法耗时耗力,具有破坏性。高光谱成像技术凭借其快速、无损且精确的优点在食品安全检测领域得到广泛应用... 藕粉营养价值高,工艺复杂,一些不法商家受到利益的驱使,利用廉价的普通淀粉冒充藕粉或在藕粉中掺入普通淀粉。传统的藕粉真伪检查方法耗时耗力,具有破坏性。高光谱成像技术凭借其快速、无损且精确的优点在食品安全检测领域得到广泛应用。因此,为了准确区分藕粉和其他普通淀粉并识别掺假藕粉,提出了一种高光谱成像技术结合深度学习的快速鉴别藕粉真伪的方法。利用高光谱成像技术采集900~1700 nm波段范围内的纯藕粉、四种普通淀粉以及掺假淀粉的高光谱图像。在纯藕粉和四种普通淀粉的高光谱图像中划分若干个感兴趣区域(ROI),计算每个ROI的平均反射率作为构建分类模型的原始光谱数据。去除掉原始光谱前后受噪音影响的异常波段,保留了940~1675 nm之间的443个波段。接着通过孤立森林(IF)算法剔除掉光谱数据中的异常数据。为提高模型训练效率,采用竞争性自适应重加权算法(CARS)、自助软收缩算法(BOSS)和通道注意力模块(CAMM)三种方法分别从443个波段中提取出45、32和12个特征波长。基于提取出的特征波长的光谱数据,构建了偏最小二乘判别(PLS-DA)分类模型,其中CAMM-PLS-DA模型识别效果最好,测试集准确率达到了95.25%。为了确定最佳分类模型,基于CAMM提取不同特征波长数目下的光谱数据,建立PLS-DA、支持向量机(SVM)和卷积神经网络(CNN)分类模型,其中CAMM-CNN模型的分类性能最好,测试集准确率最高达到了99.69%。为进一步检验CAMM-CNN模型对掺假藕粉的鉴别能力,将掺假藕粉高光谱图像所有像素点的光谱数据输入到训练好的CAMM-CNN模型中进行判别,从可视化图像看出,模型成功识别出掺假藕粉中的多种普通淀粉。研究结果表明,高光谱成像技术结合深度学习方法可以有效地应用于藕粉的真伪鉴别,这为打击藕粉掺假行为和保障藕粉安全提供了一种新的检测手段。 展开更多
关键词 藕粉 掺假 高光谱成像技术 深度学习 通道注意力机制模块 卷积神经网络
在线阅读 下载PDF
混合数据驱动的轻量化YOLOv5故障选线方法 被引量:4
16
作者 郝帅 田卓 +2 位作者 马旭 李威 李嘉豪 《西安科技大学学报》 CAS 北大核心 2024年第5期966-975,共10页
针对传统选线方法精度低、实时性差、易受噪声干扰的问题,提出一种混合数据驱动的轻量化YOLOv5选线方法,简记为MSE-YOLOv5。首先,以零序电流作为区分故障线路与非故障线路的判断依据,为了增强二者间数据对比差异性,利用小波变换将零序... 针对传统选线方法精度低、实时性差、易受噪声干扰的问题,提出一种混合数据驱动的轻量化YOLOv5选线方法,简记为MSE-YOLOv5。首先,以零序电流作为区分故障线路与非故障线路的判断依据,为了增强二者间数据对比差异性,利用小波变换将零序电流信号映射为二维时频图;其次,为了扩充样本数量,利用搭建的小电流接地系统仿真模型,通过改变故障点位置、初相位以及接地电阻等参数生成仿真数据,与真实数据构成混合数据集;然后,为了减少选线时背景噪声对微弱故障信号特征的影响,在所搭建检测网络的颈部网络中引入通道注意力模块,从而增强故障特征的表达能力;最后,为了提高选线实时性,在网络中引入轻量化网络以减少其参数量与运算量。为了验证所提出方法的优势,利用某变电站真实故障数据进行测试,并与4种经典算法进行比较。结果表明:所提混合数据驱动的轻量化YOLOv5故障选线方法具有较高精度,其选线精度可达95.2%,即使在噪声干扰条件下,选线精度依然可以保持在90%以上;具有更轻的体量及更快的选线速度,参数量下降至原网络的1/5,计算量下降至1/7,检测速度可达7.7 ms。因此,混合数据驱动的轻量化YOLOv5故障选线方法具有体量小、速度快、精度高的优点,有利于后期将其部署到现场设备中。 展开更多
关键词 故障选线 小波变换 混合数据集 通道注意力模块 轻量化网络
在线阅读 下载PDF
基于MSCAU-Net的视网膜眼底图像的硬渗出液分割
17
作者 傅迎华 张葛 左嵩 《控制工程》 CSCD 北大核心 2024年第7期1244-1253,共10页
硬渗出液是早期糖尿病性视网膜病变(diabetic retinopathy,DR)的主要病症之一,在眼底图像中占据的像素点较少,其检测容易受视盘、软渗出液的干扰。针对这些问题,在U型网络(U-Net)结构的基础上,通过在编码器和解码器中融入残差模块和残... 硬渗出液是早期糖尿病性视网膜病变(diabetic retinopathy,DR)的主要病症之一,在眼底图像中占据的像素点较少,其检测容易受视盘、软渗出液的干扰。针对这些问题,在U型网络(U-Net)结构的基础上,通过在编码器和解码器中融入残差模块和残差通道注意力模块学习硬渗出液的细微特征,在跳跃连接中加入一种新的多尺度通道注意力(multi-scale channel attention,MSCA)模块提升网络对稀疏小病灶的分割能力,提出了MSCA U-Net。基于超广角眼底图像数据集和印度糖尿病性视网膜病变图像数据集的实验结果表明,与其他基于卷积神经网络的图像分割方法相比,所提方法具有更高的硬渗出液分割精度。 展开更多
关键词 MSCA U-Net 多尺度通道注意力模块 超广角眼底图像 硬渗出液分割
在线阅读 下载PDF
基于料面视频图像分析的高炉异常状态智能感知与识别 被引量:2
18
作者 朱霁霖 桂卫华 +2 位作者 蒋朝辉 陈致蓬 方怡静 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1345-1362,共18页
智能感知、精准识别高炉(Blast furnace,BF)异常状态对高炉调控优化和稳定运行至关重要,但高炉内部的黑箱状态致使传统检测方法难以直接感知并准确识别多种高炉异常状态.新型工业内窥镜可获取大量料面视频图像,为直接观测炉内运行状态... 智能感知、精准识别高炉(Blast furnace,BF)异常状态对高炉调控优化和稳定运行至关重要,但高炉内部的黑箱状态致使传统检测方法难以直接感知并准确识别多种高炉异常状态.新型工业内窥镜可获取大量料面视频图像,为直接观测炉内运行状态提供了全新的手段.基于此,提出一种基于料面视频图像分析的高炉异常状态智能感知与识别方法.首先,提出基于多尺度纹理模糊C均值(Multi-scale texture fuzzy C-means,MST-FCM)聚类的高温煤气流区域提取方法,准确获取煤气流图像,并提取煤气流图像多元特征;其次,提出基于特征编码的高维特征降维方法,结合自适应K-means++算法,实现煤气流异常状态的粗粒度感知;在此基础上,通过改进雅可比−傅立叶矩(Jacobi-Fourier moments,JFM)提取煤气流图像深层特征变化趋势,进而提出细粒度煤气流异常状态感知方法;最后,基于煤气流异常状态感知结果,结合料面视频图像,提出多级残差通道注意力模块(Multi-level residual channel attention module,MRCAM),建立高炉异常状态识别模型ResVGGNet,实现高炉煤气流异常、塌料和悬料的精准在线识别.实验结果表明,所提方法能准确识别不同的高炉异常状态且识别速度快,可为高炉平稳运行提供重要保障. 展开更多
关键词 高炉 料面图像 高炉异常状态感知 高炉异常状态识别 多级残差通道注意力模块
在线阅读 下载PDF
基于双特征提取网络的车道线识别方法 被引量:2
19
作者 窦志 孙后环 +2 位作者 王周利 代远扬 高枫 《激光杂志》 CAS 北大核心 2024年第5期48-54,共7页
为了提高复杂环境下网络的特征提取能力,提出一种双特征提取网络的车道线识别方法。首先搭建双特征提取网络,减少细节语义信息的丢失,强化模型面对复杂环境的识别能力。然后使用改进的空洞空间金字塔池化结构增大感受野,提取更为丰富的... 为了提高复杂环境下网络的特征提取能力,提出一种双特征提取网络的车道线识别方法。首先搭建双特征提取网络,减少细节语义信息的丢失,强化模型面对复杂环境的识别能力。然后使用改进的空洞空间金字塔池化结构增大感受野,提取更为丰富的上下文信息,并结合深度可分离卷积,降低模型的计算量。最后构造通道注意力模块,重点关注有效信息较多的特征通道。经实验验证,所提方法在Tusimple数据集上准确率可达97.7%,mIoU为76.2%,单图识别时间为26.24 ms,在复杂环境下进行车道线识别时,鲁棒性较好。 展开更多
关键词 车道线识别 双特征提取 Swin Transformer 通道注意力模块 空洞卷积
在线阅读 下载PDF
基于YOLOv5s网络改进的钢铁表面缺陷检测算法 被引量:3
20
作者 杨涛 刘美 +3 位作者 孟亚男 张斐 刘世杰 莫常春 《机床与液压》 北大核心 2024年第4期19-26,共8页
针对目前钢铁表面缺陷检测算法存在检测精度低、检测速度慢和模型复杂度高等问题,提出基于YOLOv5s改进的钢铁表面缺陷检测算法。将SE通道注意力模块融入骨干网络中以增大缺陷特征通道权重,降低背景干扰,提高算法对缺陷特征的提取能力;... 针对目前钢铁表面缺陷检测算法存在检测精度低、检测速度慢和模型复杂度高等问题,提出基于YOLOv5s改进的钢铁表面缺陷检测算法。将SE通道注意力模块融入骨干网络中以增大缺陷特征通道权重,降低背景干扰,提高算法对缺陷特征的提取能力;在颈部网络融入STR多头自注意力模块,提高缺陷边缘纹理等细节特征的比重;改进损失函数为SIoU,缩短预测框回归收敛过程以提高算法检测速度。实验结果表明:改进算法在NEU-DET数据集上的mAP值为80.4%,较YOLOv5s提高5.5%,每秒处理帧数为100,算法体积降低约8.3%,算法计算量降低约4.3%,对比其他的目标检测算法,改进算法在检测精度、检测速度上均明显提升,模型复杂度降低明显。改进算法可满足实时钢铁表面缺陷检测需求。 展开更多
关键词 钢铁表面缺陷 SE通道注意力模块 STR模块 检测算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部