针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进...针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进行分类,筛选出不划分CU;然后利用子块不同划分方向的特性差异提前决策CU划分方向;最后利用CU中间区域与边缘区域的复杂度差异特征判断是否跳过三叉树(ternary tree,TT)划分,进一步减少候选列表划分模式数量。实验结果表明,与官方测试平台VTM10.0相比,编码器在平均输出比特率增加1.12%的代价下,编码时间减少了40.25%,说明该算法在通用视频编码中能以较小的质量损失实现更短的编码时间。展开更多
为解决当前视频重压缩取证方法没有考虑色度域信息、取证准确度低的问题,提出一种面向最新多用途视频编码(versatile video coding,VVC)标准色度域亮度域信息融合的监控视频重压缩取证方法(CLF-SVRF)。基于VVC标准的编码原理,从监控视...为解决当前视频重压缩取证方法没有考虑色度域信息、取证准确度低的问题,提出一种面向最新多用途视频编码(versatile video coding,VVC)标准色度域亮度域信息融合的监控视频重压缩取证方法(CLF-SVRF)。基于VVC标准的编码原理,从监控视频的色度域和亮度域维度分析并确定VVC视频码流中与压缩次数密切相关的基础码流特征;基础码流特征包括色度域和亮度域编码单元(coding unit,CU)的划分类型及预测模式;结合拉格朗日率失真优化技术分析随着压缩次数的增加,色度域亮度域CU划分类型和预测模式的变化;进一步确定色度域亮度域CU划分类型和预测模式可以作为检测视频压缩次数的基础码流特征;接着考虑视频监控应用对重压缩取证方法低复杂度的需求,基于色度域亮度域CU划分类型和预测模式构建低复杂度高级码流特征;将高级码流特征输入支持向量机完成监控视频的重压缩取证。实验结果表明,与当前先进方法相比,CLF-SVRF方法的监控视频重压缩取证准确度平均提升了13.53%,同时可以大幅度地降低重压缩取证耗时,重压缩取证时间平均减少了47.42%。展开更多
通用视频编码(Versatile Video Coding,VVC)是正在探索中的下一代视频编解码标准,在新标准的制定过程中,加入了许多新技术,在提升编码性能的同时,增加了编码复杂度。针对这种情况,通过对新标准编码过程中帧间预测单元划分算法的研究发现...通用视频编码(Versatile Video Coding,VVC)是正在探索中的下一代视频编解码标准,在新标准的制定过程中,加入了许多新技术,在提升编码性能的同时,增加了编码复杂度。针对这种情况,通过对新标准编码过程中帧间预测单元划分算法的研究发现,在VVC进行帧间单元划分时,进行了多余的更深层次的划分,从而提高了编码复杂度。因此提出了一种划分层次限制的快速帧间预测算法,使单元划分提前结束,避免了多余的划分层次。实验结果表明,新算法在RA配置下,在增加1.58%的压缩率,损失0.0362的图像失真度的情况下,编码复杂度降低了46.39%,从而验证了优化算法能有效降低编码复杂度。展开更多
文摘针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进行分类,筛选出不划分CU;然后利用子块不同划分方向的特性差异提前决策CU划分方向;最后利用CU中间区域与边缘区域的复杂度差异特征判断是否跳过三叉树(ternary tree,TT)划分,进一步减少候选列表划分模式数量。实验结果表明,与官方测试平台VTM10.0相比,编码器在平均输出比特率增加1.12%的代价下,编码时间减少了40.25%,说明该算法在通用视频编码中能以较小的质量损失实现更短的编码时间。
文摘为解决当前视频重压缩取证方法没有考虑色度域信息、取证准确度低的问题,提出一种面向最新多用途视频编码(versatile video coding,VVC)标准色度域亮度域信息融合的监控视频重压缩取证方法(CLF-SVRF)。基于VVC标准的编码原理,从监控视频的色度域和亮度域维度分析并确定VVC视频码流中与压缩次数密切相关的基础码流特征;基础码流特征包括色度域和亮度域编码单元(coding unit,CU)的划分类型及预测模式;结合拉格朗日率失真优化技术分析随着压缩次数的增加,色度域亮度域CU划分类型和预测模式的变化;进一步确定色度域亮度域CU划分类型和预测模式可以作为检测视频压缩次数的基础码流特征;接着考虑视频监控应用对重压缩取证方法低复杂度的需求,基于色度域亮度域CU划分类型和预测模式构建低复杂度高级码流特征;将高级码流特征输入支持向量机完成监控视频的重压缩取证。实验结果表明,与当前先进方法相比,CLF-SVRF方法的监控视频重压缩取证准确度平均提升了13.53%,同时可以大幅度地降低重压缩取证耗时,重压缩取证时间平均减少了47.42%。
文摘通用视频编码(Versatile Video Coding,VVC)是正在探索中的下一代视频编解码标准,在新标准的制定过程中,加入了许多新技术,在提升编码性能的同时,增加了编码复杂度。针对这种情况,通过对新标准编码过程中帧间预测单元划分算法的研究发现,在VVC进行帧间单元划分时,进行了多余的更深层次的划分,从而提高了编码复杂度。因此提出了一种划分层次限制的快速帧间预测算法,使单元划分提前结束,避免了多余的划分层次。实验结果表明,新算法在RA配置下,在增加1.58%的压缩率,损失0.0362的图像失真度的情况下,编码复杂度降低了46.39%,从而验证了优化算法能有效降低编码复杂度。