Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new...Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.展开更多
In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of p...In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.展开更多
Network coding is proved to have advantages in both wireline and wireless networks. Especially, appropriate network coding schemes are programmed for underlined networks. Considering the feature of strong node mobilit...Network coding is proved to have advantages in both wireline and wireless networks. Especially, appropriate network coding schemes are programmed for underlined networks. Considering the feature of strong node mobility in aviation communication networks, a hop-by-hop network coding algorithm based on ad hoc networks was proposed. Compared with COPE-like network coding algorithms, the proposed algorithm does not require overhearing from other nodes, which meets confidentiality requirements of aviation communication networks. Meanwhile, it does save resource consumption and promise less processing delay. To analyze the performance of the network coding algorithm in scalable networks with different traffic models, a typical network was built in a network simulator, through which receiving accuracy rate and receiving delay were both examined.The simulation results indicate that, by virtue of network coding, the proposed algorithm works well and improves performance significantly. More specifically, it has better performance in enhancing receiving accuracy rate and reducing receiving delay, as compared with any of the traditional networks without coding. It was applied to both symmetric and asymmetric traffic flows and, in particular, it achieves much better performance when the network scale becomes larger. Therefore, this algorithm has great potentials in large-scale multi-hop aviation communication networks.展开更多
基金Project(60202005) supported by the National Natural Science Foundation of China
文摘Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.
基金Projects(2003CB314802) supported by the State Key Fundamental Research and Development Programof China project(90104001) supported by the National Natural Science Foundation of China
文摘In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.
基金Project(61175110)supported by the National Natural Science Foundation of ChinaProject(2012CB316305)supported by National Basic Research Program of ChinaProject(2011ZX02101-004)supported by National S&T Major Projects of China
文摘Network coding is proved to have advantages in both wireline and wireless networks. Especially, appropriate network coding schemes are programmed for underlined networks. Considering the feature of strong node mobility in aviation communication networks, a hop-by-hop network coding algorithm based on ad hoc networks was proposed. Compared with COPE-like network coding algorithms, the proposed algorithm does not require overhearing from other nodes, which meets confidentiality requirements of aviation communication networks. Meanwhile, it does save resource consumption and promise less processing delay. To analyze the performance of the network coding algorithm in scalable networks with different traffic models, a typical network was built in a network simulator, through which receiving accuracy rate and receiving delay were both examined.The simulation results indicate that, by virtue of network coding, the proposed algorithm works well and improves performance significantly. More specifically, it has better performance in enhancing receiving accuracy rate and reducing receiving delay, as compared with any of the traditional networks without coding. It was applied to both symmetric and asymmetric traffic flows and, in particular, it achieves much better performance when the network scale becomes larger. Therefore, this algorithm has great potentials in large-scale multi-hop aviation communication networks.