期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
航空发动机损伤图像的二分类到多分类递进式检测网络 被引量:8
1
作者 樊玮 李晨炫 +2 位作者 邢艳 黄睿 彭洪健 《计算机应用》 CSCD 北大核心 2021年第8期2352-2357,共6页
航空发动机损伤是影响飞行安全的重要因素。当前基于计算机视觉的发动机孔探图像损伤检测存在两个主要问题:一是孔探图像背景复杂,使得模型对损伤的检测精度较低;二是孔探图像数据来源受限,导致模型可检测类别较少。为解决这两个问题,... 航空发动机损伤是影响飞行安全的重要因素。当前基于计算机视觉的发动机孔探图像损伤检测存在两个主要问题:一是孔探图像背景复杂,使得模型对损伤的检测精度较低;二是孔探图像数据来源受限,导致模型可检测类别较少。为解决这两个问题,提出了基于Mask R-CNN的二分类到多分类递进式航空发动机损伤图像检测网络。通过在Mask R-CNN中增加二分类检测分支,首先对图像中的损伤进行二分类检测并对定位坐标进行回归优化;其次使用原始检测分支递进地进行多分类检测,以进一步回归优化损伤的检测结果并确定损伤类型;最后根据多分类检测的结果,通过Mask分支对对损伤进行实例分割。为了增加模型检测类别及验证方法的有效性,构建了包含八种损伤类型,共1315张孔探图像的数据集。在该集合上进行的训练和测试结果表明,多分类检测的平均精度(AP)和AP75与Mask R-CNN相比分别提高3.34%、9.71%,可见所提方法能够有效提高对孔探图像中的损伤的多分类检测精度。 展开更多
关键词 孔探图像 目标检测 实例分割 航空发动机探伤 递进式检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部