期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于递归神经网络模型的传感器非线性动态补偿 被引量:9
1
作者 田社平 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第1期13-16,共4页
讨论了递归神经网络模型在传感器非线性动态补偿中的应用 ,给出了递归神经网络模型的结构及相应的训练算法 .递归神经网络模型本身具有动态映射能力 ,其结构仅与输入层和中间层的节点数有关 ,且不需要知道被补偿传感器的结构特性 (如输... 讨论了递归神经网络模型在传感器非线性动态补偿中的应用 ,给出了递归神经网络模型的结构及相应的训练算法 .递归神经网络模型本身具有动态映射能力 ,其结构仅与输入层和中间层的节点数有关 ,且不需要知道被补偿传感器的结构特性 (如输出、输入的最大延迟 )等先验知识 ,简化了动态补偿器的结构设计 .采用递推预报误差算法训练神经网络 ,具有收敛速度快、收敛精度高的特点 .实验结果表明 ,经过补偿后的传感器具有期望的输入输出特性 。 展开更多
关键词 传感器 非线性动态补偿 递归神经网络模型 网络结构 训练算法 推预报误差算法
在线阅读 下载PDF
基于神经网络特征的句子级别译文质量估计 被引量:15
2
作者 陈志明 李茂西 王明文 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1804-1812,共9页
机器翻译质量估计是自然语言处理中的一个重要任务,与传统的机器翻译自动评价方法不同,译文质量估计方法评估机器译文的质量不使用人工参考译文.针对目前句子级别机器译文质量估计特征提取严重依赖语言学分析导致泛化能力不足,并且制约... 机器翻译质量估计是自然语言处理中的一个重要任务,与传统的机器翻译自动评价方法不同,译文质量估计方法评估机器译文的质量不使用人工参考译文.针对目前句子级别机器译文质量估计特征提取严重依赖语言学分析导致泛化能力不足,并且制约着后续支持向量回归算法的性能,提出了利用深度学习中上下文单词预测模型和矩阵分解模型提取句子向量特征,并将其与递归神经网络语言模型特征相结合来提高译文质量自动估计与人工评价的相关性.在WMT15和WMT16译文质量估计子任务数据集上的实验结果表明:利用上下文单词预测模型提取句子向量特征的方法性能统计一致地优于传统的QuEst方法和连续空间语言模型句子向量特征提取方法,这揭示了提出的特征提取方法不仅不需要语言学分析,而且显著地提高了译文质量估计的效果. 展开更多
关键词 机器翻译质量估计 句子级别 词向量 归神经网络语言模型 支持向量回归
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
3
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部