期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于递归纹理特征消除的WorldView-2树种分类 被引量:16
1
作者 刘怀鹏 安慧君 +1 位作者 王冰 张秋良 《北京林业大学学报》 CAS CSCD 北大核心 2015年第8期53-59,共7页
利用遥感影像识别树种是一个尚未解决的科学难题,传统方法在高分辨率影像树种分类中存在着诸多不适宜问题。本文通过提取WorldView-2影像的纹理特征构造高维数据,利用递归特征消除降低数据维数,逐步解除最大似然分类的休斯现象,并将有... 利用遥感影像识别树种是一个尚未解决的科学难题,传统方法在高分辨率影像树种分类中存在着诸多不适宜问题。本文通过提取WorldView-2影像的纹理特征构造高维数据,利用递归特征消除降低数据维数,逐步解除最大似然分类的休斯现象,并将有代表性的纹理特征集合与光谱特征结合,对树种进行分类。结果显示:在递归消除8个纹理特征后,最大似然的休斯现象达到了很好的规避;在结合光谱特征后,分类的总体精度达到了86.39%,Kappa系数达到了0.841 0,比基于光谱特征的总体精度和Kappa系数高12.32%和0.143 6。研究表明,在高维数据中通过递归特征消除规避最大似然分类的休斯现象,充分结合影像纹理与光谱信息对树种分类可以取得更为理想的结果。 展开更多
关键词 WorldView-2影像 城市绿化树种 纹理特征 归特征消除 最大似然分类 支持向量机
在线阅读 下载PDF
基于RFECV特征选择和随机森林预测模型的应用与优化
2
作者 孙晶 《数字通信世界》 2024年第9期114-116,共3页
该文基于随机森林预测模型,提出RFECV特征选择方法:首先对特征变量进行独热编码,再利用RFECV内置的交叉验证评估各特征子集性能,以确定最佳特征数量,并递归消除低重要性特征。实验表明,该方法在随机森林上训练与预测更快,均方误差更低,... 该文基于随机森林预测模型,提出RFECV特征选择方法:首先对特征变量进行独热编码,再利用RFECV内置的交叉验证评估各特征子集性能,以确定最佳特征数量,并递归消除低重要性特征。实验表明,该方法在随机森林上训练与预测更快,均方误差更低,特征提取准确率高。 展开更多
关键词 随机森林预测模型 独热编码 归特征消除 交叉验证
在线阅读 下载PDF
基于RF-RFE算法的地铁车站洪涝灾害预测研究 被引量:3
3
作者 白莲 刘平 《铁道标准设计》 北大核心 2024年第3期192-197,207,共7页
地铁车站形式以地下段为主,进入雨期时受到洪涝灾害的威胁,易发生雨水倒灌现象,严重影响居民出行和地铁安全运营。为进一步提高地铁车站洪涝灾害预测的效果,提出基于RF-RFE和DNN神经网络的地铁车站洪涝灾害预测方法。首先,通过收集并分... 地铁车站形式以地下段为主,进入雨期时受到洪涝灾害的威胁,易发生雨水倒灌现象,严重影响居民出行和地铁安全运营。为进一步提高地铁车站洪涝灾害预测的效果,提出基于RF-RFE和DNN神经网络的地铁车站洪涝灾害预测方法。首先,通过收集并分析已发生地铁车站洪涝灾害的案例,采用文献综述结合专家访谈的方法,构建地铁车站洪涝灾害初始变量集;然后,利用随机森林—递归特征消除(RF-RFE)算法,计算初始变量重要性并完成变量分类正确率排序,从初始变量集中筛选出重要变量;最后,建立DNN神经网络预测模型,并以筛选出的重要变量作为输入样本,训练DNN神经网络,完成对地铁车站洪涝灾害的预测。研究结果表明:(1)变量选择可提高预测模型精度,与初始变量集的DNN神经网络预测模型相比,数据筛选后的DNN神经网络预测模型准确率提高了4.36%;(2)RF-RFE和DNN神经网络算法结合具有良好的效果,预测模型准确率为88.1%,F1分数为0.9。 展开更多
关键词 地铁车站 随机森林(RF)算法 归特征消除(rfe) 洪涝灾害 神经网络
在线阅读 下载PDF
基于RFE-LGB算法的上市公司财务造假分析和预测
4
作者 陈梦媛 南嘉琦 王静赛 《现代信息科技》 2024年第11期145-152,共8页
针对上市公司财务造假预测问题,采用结合了LightGBM与递归特征消除法(RFE)的方法进行数据建模。LightGBM以其超参数量少、强大的稳健性及对不平衡数据的高敏感性等特点著称。RFE作为一种封装式特征选择方法,能高度匹配所用预测模型,并... 针对上市公司财务造假预测问题,采用结合了LightGBM与递归特征消除法(RFE)的方法进行数据建模。LightGBM以其超参数量少、强大的稳健性及对不平衡数据的高敏感性等特点著称。RFE作为一种封装式特征选择方法,能高度匹配所用预测模型,并通过设定特征子集评价函数作为停止条件,自动确定最优特征数量,这在特征选择领域具有较大优势。此外,选用平衡精度(BAcc)作为模型预测性能的评估指标,并通过调整LightGBM的分类权重参数来解决样本不平衡的问题。在5个不同行业财务数据集上的实验结果表明,所提出的RFE-LGB模型在上市公司财务造假预测任务中表现出良好的平衡性、稳健性和泛化性。该模型能有效识别与财务造假相关的关键指标,且仅使用较少的核心特征即可达到较高的预测精度。 展开更多
关键词 上市公司 财务造假 LightGBM 归特征消除 特征选择
在线阅读 下载PDF
采用机器学习的聚类模型特征选择方法比较 被引量:3
5
作者 赵玮 《华侨大学学报(自然科学版)》 CAS 北大核心 2017年第1期105-108,共4页
针对机器学习聚类模型在特征选择时存在的问题,首先,对特征选择在聚类模型中的适用性进行分析并对其进行调整和改进.然后,基于R语言中的递归特征消除(RFE)特征选择方法和Boruta特征选择方法进行特征选择算法设计.最后,应用聚类内部有效... 针对机器学习聚类模型在特征选择时存在的问题,首先,对特征选择在聚类模型中的适用性进行分析并对其进行调整和改进.然后,基于R语言中的递归特征消除(RFE)特征选择方法和Boruta特征选择方法进行特征选择算法设计.最后,应用聚类内部有效性指标,对在线品牌忠诚度聚类模型优化结果进行分析,进而对特征选择方法进行比较研究.结果表明:Boruta特征选择方法更具优势. 展开更多
关键词 特征选择 聚类模型 机器学习 归特征消除算法 Boruta方法
在线阅读 下载PDF
基于特征优选与深度学习的车载电源微小故障诊断方法 被引量:3
6
作者 李炜 韩寅龙 孙晓静 《兵工学报》 EI CAS CSCD 北大核心 2022年第11期2935-2944,共10页
车载电源作为军队武器装备作训和应急的主要电能来源,其微小故障的准确诊断可有效预防严重故障的发生。然而实际监测数据往往存在冗余,且微小故障征兆难以有效提取,针对此提出一种基于递归特征消除(RFE)与栈式自编码神经网络(SAE)相结... 车载电源作为军队武器装备作训和应急的主要电能来源,其微小故障的准确诊断可有效预防严重故障的发生。然而实际监测数据往往存在冗余,且微小故障征兆难以有效提取,针对此提出一种基于递归特征消除(RFE)与栈式自编码神经网络(SAE)相结合的微小故障智能诊断方法。利用REF算法对所采集的特征变量进行重要度排序,以消除冗余并优选构建故障特征子集;再以该特征子集作为SAE深度网络的输入,微小故障类别作为输出,从而实现车载电源微小故障的有效诊断。仿真结果表明,与单纯SAE及浅层神经网络相比,所提方法的微小故障诊断准确率有明显提升,达到95.4%。 展开更多
关键词 车载电源 微小故障诊断 归特征消除 栈式自编码网络
在线阅读 下载PDF
基于RF-RFECV和PSO-SVM的化工过程故障诊断方法 被引量:3
7
作者 张伟 王连彪 张广帅 《青岛科技大学学报(自然科学版)》 CAS 2022年第5期101-108,共8页
针对复杂化工生产过程数据多样性、高维性以及耦合性的特点,提出一种基于交叉验证递归特征消除算法(RFECV)、粒子群优化算法(PSO),并结合随机森林(RF)和支持向量机(SVM)的故障诊断方法。首先利用RF-RFECV方法对混合运行数据进行K折交叉... 针对复杂化工生产过程数据多样性、高维性以及耦合性的特点,提出一种基于交叉验证递归特征消除算法(RFECV)、粒子群优化算法(PSO),并结合随机森林(RF)和支持向量机(SVM)的故障诊断方法。首先利用RF-RFECV方法对混合运行数据进行K折交叉验证学习与重要性排序,抽取并重构故障特征信息;将预处理后的数据作为输入样本,利用PSO与序列最小优化算法(SMO)搜索超参数得到最佳SVM分类器,实现故障诊断。应用于田纳西-伊斯曼(Tennessee Eastman, TE)过程的仿真实验结果表明:RF-RFECV与PSO-SVM融合故障诊断方法泛化能力强、诊断准确率高,识别准确率可达到99.5%以上。 展开更多
关键词 粒子群优化算法 交叉验证归特征消除算法 随机森林 支持向量机 田纳西-伊斯曼过程
在线阅读 下载PDF
基于多种特征选择策略的入侵检测模型研究 被引量:13
8
作者 何红艳 黄国言 +1 位作者 张炳 陈瑜 《信息安全研究》 2021年第3期225-232,共8页
入侵检测是防止主机和网络攻击的有效方法.入侵检测系统的使用弥补了传统防火墙技术、签名认证技术、访问控制技术在安全保护方面的不足.但是,由于入侵检测数据样本特征之间存在互冗余性,干扰了攻击检测的准确性和效率.特征选择方法能... 入侵检测是防止主机和网络攻击的有效方法.入侵检测系统的使用弥补了传统防火墙技术、签名认证技术、访问控制技术在安全保护方面的不足.但是,由于入侵检测数据样本特征之间存在互冗余性,干扰了攻击检测的准确性和效率.特征选择方法能有效降低数据特征的维度和消除冗余特征,选出最优特征子集并提高网络流量异常检测的准确率.基于此,首先使用Kmeans聚类算法在真实流量数据集UNSW-NB15提取典型数据,生成具有典型数据特征的数据集作为特征提取的数据集,随后在该数据集上分别使用了9种不同策略的入侵检测模型进行了网络入侵检测实验.实验结果表明,该方法能够进行有效检测和分类,正常流量、恶意流量二分类精度为88.27%,高于其他机器学习算法.并且在进行多类分类研究时样本数据少的攻击类型的检测率均有提高.验证了该方法的有效性,易于使用. 展开更多
关键词 入侵检测 特征选择 UNSW-NB15 特征递归消除(rfe) 逻辑回归(LR)
在线阅读 下载PDF
一种有效降维的特征选择方法及其在水声目标识别中的应用 被引量:2
9
作者 郭政 赵梅 胡长青 《声学技术》 CSCD 北大核心 2021年第1期14-20,共7页
为在保证目标识别准确率基础上进行有效特征降维,文章以目标识别准确率为特征选择准则,提出一种支持向量机递归特征消除(Support Vector Machine Recursive Feature Elimination,SVM-RFE)快速筛选出部分优质特征子集与猫群算法(Cat Swar... 为在保证目标识别准确率基础上进行有效特征降维,文章以目标识别准确率为特征选择准则,提出一种支持向量机递归特征消除(Support Vector Machine Recursive Feature Elimination,SVM-RFE)快速筛选出部分优质特征子集与猫群算法(Cat Swarm Algorithm,CSO)迭代寻优结合的特征选择方法,并将该方法应用于水声目标识别的特征选择。实验数据处理结果表明:相比SVM-RFE和CSO特征选择算法,文中提出的方法在平均特征维数降低8%的基础上,平均目标识别率提高了1.88%,能够实现有效降维的目的。该方法对判断特征是否适合用于特定的目标识别也有一定应用价值。 展开更多
关键词 特征选择 水声目标识别 支持向量机 归特征消除 猫群算法
在线阅读 下载PDF
基于RFE+CatBoost模型的异常用电检测方法研究 被引量:3
10
作者 冉哲 李英娜 刘爱莲 《电视技术》 2021年第8期121-126,132,共7页
针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法... 针对传统电力检测领域中异常用电检测模型需要调节大量超参数导致异常用电检测效率低下,以及模型选取特征不能充分反映实际用电情况导致分类精度不高的问题,提出一种基于RFE+CatBoost模型的异常用电检测方法。较传统的异常用电检测方法而言,CatBoost算法降低了模型检测对于超参数的依赖。以用户用电数据作为研究对象,结合RFE算法分析用户在用电表现上的不同特征,采用分类预测算法对异常用电行为进行进一步研究,最后通过云南某地用户用电数据集进行验证,与其他用电异常检测模型进行对比,实验证明所提模型具有很好的检测能力,对于提升企业用电异常检测效率、指导用户更好地用电具有重要意义。 展开更多
关键词 异常用电检测 特征递归消除 分类预测算法
在线阅读 下载PDF
基于XGBoost-RFE-CBR的心电信号情绪识别研究 被引量:3
11
作者 杨琳坤 何培宇 +1 位作者 潘帆 方安成 《成都信息工程大学学报》 2023年第3期258-263,共6页
情绪是一种复杂的行为现象,是对不同外部刺激的生理反应。为快速、便捷地识别人类的情绪,提出了一种基于极限梯度提升结合可减少相关性偏差和递归特征消除的心电信号情绪识别方法。先对AMIGOS数据集进行特征提取、结合XGBoost-RFE-CBR... 情绪是一种复杂的行为现象,是对不同外部刺激的生理反应。为快速、便捷地识别人类的情绪,提出了一种基于极限梯度提升结合可减少相关性偏差和递归特征消除的心电信号情绪识别方法。先对AMIGOS数据集进行特征提取、结合XGBoost-RFE-CBR特征排序算法进行特征选择,得到27个心电信号和心率变异性的时域、频域等特征参数,利用XGBoost进行分类,最后在五折交叉验证下,最高准确率达80.5%、平均准确率达77.2%。该方法与多维生理信号特征提取方法相比,在确保准确率的同时降低了计算量,对情绪识别和分类任务有一定的参考价值。 展开更多
关键词 信号与信息处理 情绪识别 心电信号 极限梯度提升 特征选择 归特征消除
在线阅读 下载PDF
基于机器学习的服装生产线员工效率预测
12
作者 鞠宇 王朝晖 +1 位作者 李博一 叶勤文 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期183-192,共10页
在服装生产线中,管理者通常凭借直觉和经验进行工人调度和工序编排,缺少基于历史生产相关数据的分析,难以进行产前预判。为此,充分利用历史生产数据,使用机器学习技术科学地预判工人产前效率,以提高生产线的平衡率。首先,收集了某工厂1... 在服装生产线中,管理者通常凭借直觉和经验进行工人调度和工序编排,缺少基于历史生产相关数据的分析,难以进行产前预判。为此,充分利用历史生产数据,使用机器学习技术科学地预判工人产前效率,以提高生产线的平衡率。首先,收集了某工厂13个订单的526个生产数据并通过分位数划分法对效率进行等级划分。其次,基于生产数据的特征,在员工生产效率预测任务中选择了随机森林集成学习模型,并与其它8个模型进行了综合比较。最后,通过递归式特征消除法,从15个初始特征中筛选出实现模型最大预测性能的最优特征组以优化模型。优化后结果显示,随机森林模型展现出优异的预测性能,在回归任务中,验证集R^(2)值为0.836,而均方根误差值为0.116;在分类任务中,其验证集平衡F分数值为0.823。研究结果表明,使用随机森林模型可以实现产前工人效率的有效预测,预测结果可避免管理者在调度时做出错误决策,同时为生产线的优化和柔性调度提供参考。 展开更多
关键词 服装生产数据 机器学习 产前效率预测 递归特征消除 柔性调度
在线阅读 下载PDF
基于改进型随机森林算法的页岩岩性识别——以准噶尔盆地芦草沟组为例
13
作者 秦志军 操应长 冯程 《新疆石油地质》 CAS CSCD 北大核心 2024年第5期595-603,共9页
在储集层岩性识别的应用中,特别是对页岩等非均质性较强的非常规储集层的岩性识别,机器学习算法的高效性、准确性和有效信息整合能力已经得到了充分验证。考虑到岩性识别的特征参数优选问题,优选自然伽马、T2几何平均值、结构指数、骨... 在储集层岩性识别的应用中,特别是对页岩等非均质性较强的非常规储集层的岩性识别,机器学习算法的高效性、准确性和有效信息整合能力已经得到了充分验证。考虑到岩性识别的特征参数优选问题,优选自然伽马、T2几何平均值、结构指数、骨架密度指数、密度和深侧向电阻率,采用结合递归特征消除的随机森林算法,对准噶尔盆地中二叠统芦草沟组页岩储集层的主要岩性进行识别;利用传统的随机森林算法和支持向量机法,对同一套资料进行岩性预测,并与岩石薄片鉴定结果对比。结合递归特征消除的随机森林算法只需选择一半的测井参数,便能够达到更好的效果,而且通过优选特征参数,缩短了算法的运行时间。因此,结合递归特征消除的随机森林算法能够实现测井特征参数的优选,提高页岩岩性识别的准确率,缩短运行时间,为复杂岩性识别和多参数选择提供了新的思路。 展开更多
关键词 随机森林算法 归特征消除 特征选择 中二叠统 芦草沟组 页岩储集层 岩性识别
在线阅读 下载PDF
基于工况识别的PHEV能量管理策略
14
作者 张代庆 牛礼民 +1 位作者 汪恒 张义奇 《西华大学学报(自然科学版)》 CAS 2024年第3期54-63,共10页
为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设... 为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设计基于工况识别算法的变等效因子ECMS能量管理策略。选取3类典型工况建立支持向量机分类模型,通过递归特征消除法对样本特征进行选择,采用鲸鱼算法对支持向量机进行参数优化,使用模拟退火算法分别对3类工况的ECMS等效因子进行离线全局最优求解,并分别存储于等效因子库中,通过训练好的支持向量机分类器对目标优化工况进行工况识别,不同类型的工况片段采用不同的等效因子进行转矩分配。仿真结果显示:相比于逻辑门限能量管理策略,基于工况识别算法的变等效因子ECMS能量管理策略的电池荷电状态(state of charge,SOC)变化量减少8.67%,节油率为13.11%;相比于优化前的ECMS策略电池SOC变化量减少3.47%,节油率约为6.63%。本文提出的基于工况识别算法的变等效因子ECMS能量管理策略可以有效地减少燃油消耗量,提升PHEV的整车经济性。 展开更多
关键词 并联混合动力汽车 能量管理策略 工况识别 鲸鱼优化算法 支持向量机 归特征消除 等效燃油消耗最小
在线阅读 下载PDF
基于改进的LightGBM算法的心脏病预测方法
15
作者 崔春燕 李宏滨 《信息技术与信息化》 2024年第9期39-42,共4页
为了优化心脏病预测模型,选取比较流行的UCI心脏病数据集为研究对象,提出基于随机森林-递归特征消除法(RF-RFE)和LightGBM的混合算法——RF-RFE-LightGBM作为心脏病预测方法。其中,利用RF-RFE算法提取较重要的特征,去除对预测结果影响... 为了优化心脏病预测模型,选取比较流行的UCI心脏病数据集为研究对象,提出基于随机森林-递归特征消除法(RF-RFE)和LightGBM的混合算法——RF-RFE-LightGBM作为心脏病预测方法。其中,利用RF-RFE算法提取较重要的特征,去除对预测结果影响较小的特征,针对优化后的特征建立LightGBM模型进行预测,采用主流的模型评价指标进行评估。实验结果表明,RF-RFE-LightGBM算法的准确率、精度、召回率、F1值、AUC值分别为0.917 1、0.905 6、0.932 0、0.918 6和0.920 3,相比于其他算法建立的模型综合性能更优,具有一定的优势。 展开更多
关键词 随机森林 归特征消除 UCI数据集 LightGBM 心脏病预测
在线阅读 下载PDF
结合遥感林龄因子的亚热带森林蓄积量估算方法 被引量:7
16
作者 周小成 黄婷婷 +4 位作者 李媛 肖祥希 朱洪如 陈芸芝 冯芝淸 《林业科学》 EI CAS CSCD 北大核心 2023年第4期88-99,共12页
【目的】应用XGBoost算法建立包含林龄的遥感因子-蓄积量模型,评价遥感估算的林龄因子与遥感因子相结合提高森林蓄积量估算精度的有效性,为实现高效、快速、精准的大范围森林蓄积量估算提供一种新的思路和方法。【方法】以福建省将乐县... 【目的】应用XGBoost算法建立包含林龄的遥感因子-蓄积量模型,评价遥感估算的林龄因子与遥感因子相结合提高森林蓄积量估算精度的有效性,为实现高效、快速、精准的大范围森林蓄积量估算提供一种新的思路和方法。【方法】以福建省将乐县为研究示范区,首先,基于1987—2016年时序Landsat影像,采用LandTrendr森林干扰与恢复监测算法监测年度林分更替干扰并估算干扰区林龄;然后,基于GF-1号影像光谱、纹理、地形等特征,采用递归特征消除的随机森林算法(RFE-RF)估算非干扰区林龄;在此基础上,结合GF-1影像光谱、纹理因子和森林资源二类调查小班实测蓄积量数据,采用极端梯度提升算法估算研究区森林蓄积量。对比有无林龄因子的森林蓄积量估算精度,进一步验证遥感林龄因子对提高森林蓄积量估算精度的重要性。【结果】采用LandTrendr森林干扰与恢复监测算法获得的干扰区林分林龄误差仅1~2年,林龄估算精度明显优于传统利用遥感因子估算的林龄精度(误差4~12年)。仅采用常规遥感因子估算森林蓄积量时,XGBoost模型决定系数(R^(2))为0.59,平均均方根误差(RMSE)为30.72 m^(3)·hm^(-2),相对均方根误差(rRMSE)为16.46%;加入林龄因子后,模型R^(2)提高至0.73,平均RMSE减少至23.73 m^(3)·hm^(-2),rRMSE为13.26%,森林蓄积量估算平均总体精度约提高10.4%,达84.4%。【结论】相比仅采用常规遥感因子估算森林蓄积量,应用XGBoost算法建立包含林龄的遥感因子-蓄积量模型,其估算精度接近森林资源调查相关规定要求,可为大范围亚热带森林资源快速调查评估提供重要技术支持。 展开更多
关键词 森林蓄积量 林龄 时序遥感 归特征消除的随机森林 极端梯度提升算法
在线阅读 下载PDF
MR影像体素形态学的阿尔茨海默病自动分类方法 被引量:4
17
作者 郭圣文 池敏越 +5 位作者 岑桂英 匡翠立 牛传筱 赖春任 吴效明 The Alzheimer's Disease Neuroimaging Initiative (ADNI) 《东南大学学报(自然科学版)》 CSCD 北大核心 2015年第2期260-265,共6页
为了确定轻度认知功能障碍(MCI)与阿尔茨海默病(AD)患者发生萎缩的重要脑区,实现正常老年人(NC)对照组、MCI与AD三组人群的分类,选择了178名被试的脑部MR影像,利用体素形态学与方差分析方法,考察NC,MCI与AD三组人群的MR影像中灰质体积差... 为了确定轻度认知功能障碍(MCI)与阿尔茨海默病(AD)患者发生萎缩的重要脑区,实现正常老年人(NC)对照组、MCI与AD三组人群的分类,选择了178名被试的脑部MR影像,利用体素形态学与方差分析方法,考察NC,MCI与AD三组人群的MR影像中灰质体积差异;然后,采用递归特征消去法对特征进行降维;最后,利用线性支持向量机对这3种人群进行分类.实验结果表明,MCI组与NC组、MCI组与AD组、AD组与NC组的平均分类准确率分别为(90.2±1.3)%,(74.7±0.9)%,100%.对分类产生重要影响的脑区包括海马、海马旁回、杏仁核、梭状回和嗅皮层等.所提方法不仅能有效揭示NC,MCI,AD三组人群的脑灰质差异,阐明MCI患者与AD患者脑区发生萎缩的过程与特性,而且能准确区分这3组人群,具有显著的临床应用价值. 展开更多
关键词 阿尔茨海默病 轻度认知功能障碍 体素形态学 支持向量机 归特征消除
在线阅读 下载PDF
基于测井参数的页岩有机碳含量支持向量机预测 被引量:12
18
作者 李泽辰 杜文凤 +1 位作者 胡进奎 李冬 《煤炭科学技术》 CAS CSCD 北大核心 2019年第6期199-204,共6页
为了解决传统的有机碳含量TOC测量方法成本高和无法获得TOC含量连续分布的问题,提出了一种TOC含量的统计预测方法。由于地层的岩性的不同,TOC含量的差异非常大,因此,首先对原始的测井数据聚类,通过聚类的方法将不同岩性的地层区分开,对... 为了解决传统的有机碳含量TOC测量方法成本高和无法获得TOC含量连续分布的问题,提出了一种TOC含量的统计预测方法。由于地层的岩性的不同,TOC含量的差异非常大,因此,首先对原始的测井数据聚类,通过聚类的方法将不同岩性的地层区分开,对不同的地层分别建立TOC含量的预测模型,再通过聚类的方法提高了各测井参数和TOC含量的相关性,这不仅提高了模型的准确性,而且使得模型更有说服力;然后通过粒子群算法优化SVM模型参数,避免了因人工选择参数带来的模型不稳定的问题,依此建立测井参数优选的SVM-RFE模型,对每一类分别进行测井参数筛选,有效的规避了各测井参数之间的信息冗余和不相关参数带来的模型性能降低和训练时间增加的问题;最后利用优选后的测井数据和SOM的分类结果,对不同的地层岩性分别建立SVR模型进行预测。结果表明:通过与其他TOC含量预测模型对比,SOM-SVR模型更加稳定,更有说服力,预测误差小,平均相对误差约6%,平均绝对误差不超过0.2。由此,可以通过SOM算法对不同岩性的地层进行聚类之后再建立TOC含量的预测模型,更有利于提高模型的精度。 展开更多
关键词 总有机碳含量 测井 SOM聚类 粒子群算法 归特征消除算法 支持向量机算法
在线阅读 下载PDF
减压馏分黏度指数的近红外预测研究 被引量:3
19
作者 任小甜 褚小立 +1 位作者 田松柏 朱新宇 《石油炼制与化工》 CAS CSCD 北大核心 2019年第1期81-84,共4页
为了实现减压馏分油(VGO)黏度指数的快速预测,以70个VGO样品的近红外光谱及黏度指数数据为基础,利用随机森林回归算法建立了黏度指数的近红外预测模型。以随机森林算法中对各特征的重要性度量为依据,通过递归特征消除法对近红外光谱进... 为了实现减压馏分油(VGO)黏度指数的快速预测,以70个VGO样品的近红外光谱及黏度指数数据为基础,利用随机森林回归算法建立了黏度指数的近红外预测模型。以随机森林算法中对各特征的重要性度量为依据,通过递归特征消除法对近红外光谱进行波长变量选择。优选出10个波长变量作为模型的输入特征,利用10折交叉验证法确定模型的超参数(回归树数量n_t为150和节点分裂的特征数n_v为5),构建一个更加稳健的随机森林预测模型。对于7个预测集的样本,其黏度指数的预测标准偏差RMSEP为2.28,决定系数R^2为0.98,表明模型具有较高的准确度和泛化能力。 展开更多
关键词 减压馏分 黏度指数 预测 近红外光谱 归特征消除 随机森林算法
在线阅读 下载PDF
基于支持向量机的结肠癌信息基因提取 被引量:3
20
作者 李烨 王永丽 贺国平 《山东科技大学学报(自然科学版)》 CAS 2012年第3期84-89,共6页
基于结肠癌基因表达谱数据集,提出了一种信息基因提取的新方法。该方法结合了支持向量机(SVM)、Bhattacharyya距离、递归特征消除(RFE)和快速基于相关性过滤器(FCBF)方法。首先,利用Bhattacharyya距离与SVM-RFE方法结合去除无关基因,然... 基于结肠癌基因表达谱数据集,提出了一种信息基因提取的新方法。该方法结合了支持向量机(SVM)、Bhattacharyya距离、递归特征消除(RFE)和快速基于相关性过滤器(FCBF)方法。首先,利用Bhattacharyya距离与SVM-RFE方法结合去除无关基因,然后运用FCBF方法得到信息基因,最后以支持向量机作为分类器对结肠癌样本进行分类识别。实验结果表明,同现有的方法相比,该方法在提取基因数量和准确率上都有明显的优势。 展开更多
关键词 结肠癌 支持向量机 信息基因 BHATTACHARYYA距离 归特征消除 快速基于相关性过滤器
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部