期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优变分模态分解的渭河流域多步径流预报 被引量:6
1
作者 邱绪迪 王坤 +2 位作者 陈飞 相里宇锡 王斌 《人民长江》 北大核心 2024年第8期79-86,95,共9页
针对渭河流域月径流序列的非平稳性日益加剧而难以对其进行精准预测的问题,提出了一种基于最优变分模态分解(OVMD)、随机配置网络(SCN)和递归多步预测策略的月径流序列多步预测模型。首先,利用OVMD将径流数据投影到不同频率的子序列中;... 针对渭河流域月径流序列的非平稳性日益加剧而难以对其进行精准预测的问题,提出了一种基于最优变分模态分解(OVMD)、随机配置网络(SCN)和递归多步预测策略的月径流序列多步预测模型。首先,利用OVMD将径流数据投影到不同频率的子序列中;然后通过SCN对每个分解部分进行预测,叠加得到单步预测结果;最后通过递归多步预测方法对未来较长时间的径流数据进行预测,得到多步预测结果。选取渭河流域华县水文站和咸阳水文站1970~2019年的实测月径流时间序列进行实例分析,并与其他常用模型进行对比,选取均方根误差RMSE、平均绝对误差MAE、平均绝对百分比误差MAPE以及纳什效率系数NSE对预测结果进行评价。研究结果表明:在华县水文站和咸阳水文站的单步预测试验中,OVMD-SCN模型的NSE分别达98.15%和98.52%,显著高于其他流行模型;在两个水文站的多步预测试验中,OVMD-SCN的各项评价指标均优于其他流行模型,表明所提方法可以精准预测5个月后的径流量。研究成果可为渭河流域的月径流精准预测提供技术支持。 展开更多
关键词 径流预报 最优变分模态分解 随机配置网络 递归多步预测 渭河流域
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部