期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于密集连接的FPN多尺度目标检测算法 被引量:10
1
作者 张宽 滕国伟 +1 位作者 范涛 李聪 《计算机应用与软件》 北大核心 2020年第1期165-171,212,共8页
图像中目标对象的多尺度问题一直以来都是目标检测领域的主要难点之一,尤其是极端尺度对象的检测。研究发现,目标检测网络模型的深层语义特征有利于对象的识别,而浅层空间特征对对象的边界框回归很有帮助。DC-FPN使用密集连接代替FPN网... 图像中目标对象的多尺度问题一直以来都是目标检测领域的主要难点之一,尤其是极端尺度对象的检测。研究发现,目标检测网络模型的深层语义特征有利于对象的识别,而浅层空间特征对对象的边界框回归很有帮助。DC-FPN使用密集连接代替FPN网络模型中的横向连接,能够从多层特征层中获取目标检测所需的特征信息,其中密集连接可以融合FPN自底向上传输模块中的所有特征层的特征信息,使FPN自顶向下传输模块的预测特征层能从中获取不同尺度对象检测所需的特征信息。实验表明,DC-FPN目标检测算法能够显著地提升模型的多尺度目标检测性能,使用MS COCO数据集训练和测试,其检测准确度(AP)能达到43.1%。 展开更多
关键词 目标检测 密集连接 感受 空间分辨率 分类 边界框回归
在线阅读 下载PDF
基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割 被引量:3
2
作者 魏超宇 韩文 +1 位作者 庞程 刘辉军 《江苏农业学报》 CSCD 北大核心 2021年第4期990-997,共8页
由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花... 由于自然环境下果蔬植株的果实、枝干和叶片等目标尺度不一、边缘不规则,因此造成其准确分割较为困难。针对该问题,提出1种多尺度特征融合和密集连接网络(Multi-scale feature fusion and dense connection networks,MDNet)以实现黄花梨疏果期植株图像的准确分割。在研究中借鉴了编码-解码网络,其中编码网络采用DenseNet对多层特征进行复用和融合,以改善信息传递方式;解码网络使用转置卷积进行上采样,结合跳层连接融合浅层细节信息与深层语义信息;在编码、解码之间加入空洞空间金字塔池化(Atrous spatial pyramid pooling,ASPP)用于提取不同感受野的特征图以融合多尺度特征,聚合上下文信息。结果表明,ASPP有效提高了模型的分割精度,MDNet在测试集上的平均局域重合度(MIoU)为77.97%,分别较SegNet、Deeplabv2和DNet提高了8.10个、5.77个和2.17个百分点,果实、枝干和叶片的像素准确率分别为93.57%、90.31%和95.43%,实现了黄花梨植株果实、枝干和叶片等目标的准确分割。在翠冠梨植株图像的独立测试中,MIoU为70.93%,表明该模型具有较强的泛化能力,对自然环境下果蔬植株图像的分割有一定的参考价值。 展开更多
关键词 黄花梨植株 多尺度特征融合 密集连接网络 图像分割 空洞空间金字塔池化(ASPP) 感受
在线阅读 下载PDF
正弦图智能插值法CT稀疏重建 被引量:4
3
作者 温静 乔志伟 《核电子学与探测技术》 CAS 北大核心 2021年第6期1125-1131,共7页
介绍了基于正弦稀疏插值法对CT图像进行稀疏重建的方法。该方法采用稀疏采样,在DNCDD网络的基础上,提出递减感受野密集连接DNCNN网络结构,汲取图像特征。网络模型采用不同大小的卷积核并加入了密集连接,通过与线性插值方法及不同经典网... 介绍了基于正弦稀疏插值法对CT图像进行稀疏重建的方法。该方法采用稀疏采样,在DNCDD网络的基础上,提出递减感受野密集连接DNCNN网络结构,汲取图像特征。网络模型采用不同大小的卷积核并加入了密集连接,通过与线性插值方法及不同经典网络方法的比较表明,该网络重建后图像的峰值信噪比和结构相似度更高,可更好地保留图像细节。 展开更多
关键词 智能插值 稀疏重建 卷积神经网络 递减感受野密集连接dncnn 医学图像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部