期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度堆栈自编码网络在船舶重量估算中的应用 被引量:5
1
作者 陈健 唐俊遥 +1 位作者 朱生光 周兆钊 《计算机工程》 CAS CSCD 北大核心 2019年第5期315-320,共6页
传统的船舶重量估算方法多数存在误差大、成本高等问题。为此,提出一种基于深度学习的船舶重量估算算法。利用多层神经网络逐层无监督学习训练初始化参数,通过反向梯度下降的方式微调参数。运用深度堆栈自编码网络挖掘深层次的数据特征... 传统的船舶重量估算方法多数存在误差大、成本高等问题。为此,提出一种基于深度学习的船舶重量估算算法。利用多层神经网络逐层无监督学习训练初始化参数,通过反向梯度下降的方式微调参数。运用深度堆栈自编码网络挖掘深层次的数据特征,并在ShipWE自建数据库上进行分析。实验结果表明,与传统吃水估算方法相比,该算法具有更强的稳定性和更高的准确性,与BP神经网络算法和径向基函数神经网络算法相比,该算法的精度更高,能有效解决船舶估算可信度低的问题。 展开更多
关键词 气囊船舶下水 深度学习 反向梯度下降 深度堆栈自编码 逐层无监督学习 参数微调
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部