针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment...针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。展开更多
为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种...为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。展开更多
文摘针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。
文摘为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。