基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设...基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设计了融合模型和改进流程。仿真结果与其他文献方法进行了对比,验证了SLM-PTS的融合具有优秀的峰值平均功率比(peak to average power ratio,PAPR)降低能力,但缺点是算法实现复杂度过高。因此,又进一步提出了互补型映射和限幅的联合算法(SLM-Clipping)融合解决方案,并利用深度学习方法建立PAPRnet模型。仿真结果验证了此算法对NC-OFDM系统具有PAPR良好的抑制效果,而且能够提高仿真运算效率。展开更多
在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系...在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.展开更多
文摘针对蝴蝶优化算法(butterfly optimization algorithm,BOA)在复杂环境路径规划过程中求解最短路径时存在收敛速度慢、易陷入局部最优等缺点,提出一种改进的蝴蝶优化算法。首先,在初始化蝴蝶种群时,为保证初代种群多样化,避免陷入局部最优解,通过Tent映射生成初代种群位置;其次,在蝴蝶香味计算阶段引入动态感觉模态,随着迭代过程的持续推进逐步增强蝴蝶的香味值,以缩短收敛时间;再次,为进一步缩短收敛时间,在全局搜索阶段引入遗传算法中的选择因子加快蝴蝶在全局搜索时向最优蝴蝶移动的速度;然后,在局部搜索阶段引入动态变异因子,有效避免在路径规划时陷入局部最优;最后,使用一种基于视线(line of sight,LOS)检测方法的初始种群生成策略,以进一步减少路径中断点的生成,同时确保由BOA算法生成的路径可行解的多样性。实验结果表明,改进的蝴蝶优化算法具有较快的收敛速度,且规划出来的路径在保证路径长度合理的情况下具有更高的平滑度。
文摘基于非连续正交频分复用(non-continuous orthogonal frequency division multiplexing,NC-OFDM)模型,提出和研究了选择映射(selected mapping,SLM)算法和部分传输序列(partial transmit sequence,PTS)算法,及其SLM-PTS融合优化技术,设计了融合模型和改进流程。仿真结果与其他文献方法进行了对比,验证了SLM-PTS的融合具有优秀的峰值平均功率比(peak to average power ratio,PAPR)降低能力,但缺点是算法实现复杂度过高。因此,又进一步提出了互补型映射和限幅的联合算法(SLM-Clipping)融合解决方案,并利用深度学习方法建立PAPRnet模型。仿真结果验证了此算法对NC-OFDM系统具有PAPR良好的抑制效果,而且能够提高仿真运算效率。
文摘在高维多目标进化算法中,通常利用重组算子产生优质子代来引导种群搜索,已有研究表明,利用相似个体进行重组可以提高子代个体质量.由于自组织映射(Self-Organizing Mapping,SOM)网络能够通过聚类的方式保持种群个体原有的拓扑逻辑关系并获得个体的相似信息,因此本文提出一种基于SOM聚类和自适应算子选择的高维多目标进化算法(Many-Objective Evolutionary Algorithm based on SOM Clustering and Adaptive Operator Selection,MaOEASCAOS).本文首先通过自组织映射网络进行种群分类,提取个体数据结构信息,并利用相似性构建邻域交配池;然后根据类内个体支配信息进行自适应算子选择,提高算法搜索和收敛性能;最后,采用环境选择策略对种群进行多样性管理以保证种群在帕累托前沿均匀分布.仿真结果表明,本文提出的基于SOM聚类和自适应算子选择(SOM Clustering and Adaptive Operator Selection,SCAOS)方法在处理高维多目标优化问题时具有较强的竞争力并且性能指标整体优于其他方法.