期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于逆注意力机制和像素相似度学习的图像分割 被引量:1
1
作者 向涛 乔文昇 +1 位作者 邓永兴 王延斌 《电讯技术》 北大核心 2020年第8期902-909,共8页
针对图像语义分割中目标边界容易混淆、定位不准以及边界不平滑问题,在Deeplab v2 Resnet-101网络的基础上引入提出的逆注意层与像素相似度学习层,构造了一种新的语义分割的网络结构,并设计了注意力层和像素相似度学习层的损失函数。首... 针对图像语义分割中目标边界容易混淆、定位不准以及边界不平滑问题,在Deeplab v2 Resnet-101网络的基础上引入提出的逆注意层与像素相似度学习层,构造了一种新的语义分割的网络结构,并设计了注意力层和像素相似度学习层的损失函数。首先,使用Deeplab v2 Resnet-101网络提取图像语义特征;然后,利用提出的逆注意力层修正预测网络的分割结果,同时,利用提出的像素相似度学习层解决边界不够平滑的问题;最后融合两者分割的结果,得到语义分割的结果。在PASCAL-Context上取得了像素准确度76.2%、像素平均准确度59.7%、平均IoU(Intersection over Union)准确度指标49.9%的结果,在PASCAL Person-Part、NYUDv2、MIT ADE20K数据集上分别取得了平均IoU准确度指标69.6%、42.1%、44.38%的结果,与已有的主流方法相比,所提算法能够提升语义分割的精确度,验证了算法的有效性。 展开更多
关键词 图像语义分割 逆注意力机制 相似度学习 卷积神经网络
在线阅读 下载PDF
基于原型网络的小样本禽蛋图像特征检测方法 被引量:5
2
作者 李庆旭 王巧华 《农业机械学报》 EI CAS CSCD 北大核心 2021年第11期376-383,共8页
机器视觉因具有检测速度快、稳定性高及成本低等优点,已发展成为禽蛋无损检测领域主流检测手段。使用该技术对禽蛋进行无损检测时,需要依赖大量禽蛋图像作为数据支撑才能取得较好的检测效果。由于养殖安全等限制,禽蛋图像数据的采集成... 机器视觉因具有检测速度快、稳定性高及成本低等优点,已发展成为禽蛋无损检测领域主流检测手段。使用该技术对禽蛋进行无损检测时,需要依赖大量禽蛋图像作为数据支撑才能取得较好的检测效果。由于养殖安全等限制,禽蛋图像数据的采集成本较高,针对该问题,提出了一种适应于小样本禽蛋图像检测的原型网络(Prototypical network)。该网络利用引入注意力机制的逆残差结构搭建的卷积神经网络将不同类别的禽蛋图像映射至嵌入空间,并利用欧氏距离度量测试禽蛋图像在嵌入空间的类别,从而完成禽蛋图像的分类。本文利用该网络分别验证了小样本条件下受精蛋与无精蛋、双黄蛋与单黄蛋及裂纹蛋与正常蛋的分类检测效果,其检测精度分别为95%、98%、88%。试验结果表明本文方法能够有效地解决禽蛋图像检测中样本不足的问题,为禽蛋图像无损检测研究提供了新的思路。 展开更多
关键词 小样本 禽蛋 无损检测 原型网络 注意力机制残差
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部