Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen...Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.展开更多
Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of th...Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.展开更多
High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The e...High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.展开更多
基金Project(U1709211) supported by NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization,ChinaProject(ICT2021A15) supported by the State Key Laboratory of Industrial Control Technology,Zhejiang University,ChinaProject(TPL2019C03) supported by Open Fund of Science and Technology on Thermal Energy and Power Laboratory,China。
文摘Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.
基金Projects(51308363,11327801)supported by the National Natural Science Foundation of ChinaProject(2013-1792-9-4)supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(YJ201307)supported by the Start-up Research Fund for Introduced Talents of Sichuan University,China
文摘Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.
基金Projects(51135003,U1234208)supported by the National Natural Science Foundation of ChinaProject(IRT0816)supported by Program for Changjiang Scholars and Innovative Research Team in University of ChinaProject(N110603001)supported by the Fundamental Research Funds for the Central Universities of China
文摘High-speed bogie frame is a key mechanical component in a train system. The reliability analysis of the bogie is necessary to the safety of high-speed train. Reliability analysis of a bogie frame was considered. The equivalent load method was employed to account for random repeated loads in structural reliability analysis. Degradation of material strength was regarded as a Gamma process. The probabilistic perturbation method was, then, employed for response moment computation. Example of a high-speed train bogie structure under time-variant load was employed for reliability and sensitivity analyses. Monte-Carlo simulation verifies the accuracy and efficiency of the proposed method in time-variant reliability analysis. The analysis results show that the reliability calculation considering the strength degradation and repeated load is closer to the practicality than the method of considering reliability calculation only. Its decreasing velocity is faster than the traditional reliability. The reliability sensitivity value changes over time. The analysis results provide a variation trend of reliability and sensitivity to design and usage of bogie frame.