期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于元启发式策略的迭代自学习K-Means算法 被引量:2
1
作者 雷小锋 杨阳 +2 位作者 张克 谢昆青 夏征义 《计算机科学》 CSCD 北大核心 2009年第7期175-178,共4页
类内误差平方和最小化的聚类准则求解是NP难问题,K-Means采用的迭代重定位方法本质上是一种局部搜索的爬山算法,因此聚类结果对初始代表点的选择非常敏感,只能保证局部最优。为此,引入元启发式策略,通过建立评估函数对K-Means初始代表... 类内误差平方和最小化的聚类准则求解是NP难问题,K-Means采用的迭代重定位方法本质上是一种局部搜索的爬山算法,因此聚类结果对初始代表点的选择非常敏感,只能保证局部最优。为此,引入元启发式策略,通过建立评估函数对K-Means初始代表点和目标函数之间的依赖关系进行近似,然后利用近似评估函数指导新的初始代表点的选择,构成一种迭代自学习框架下的K-Means算法。实验表明算法可以很好地克服K-Means对初始代表点的依赖性,获得较高质量的聚类结果。 展开更多
关键词 聚类问题K-Means算法 元启发式策略 迭代自学习框架
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部