论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流...论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流水线模型仍然是独立的看待每个子任务,为每个子任务训练单独的模型,存在错误传播的问题,且在训练过程中产生了冗余信息.因此,本文提出了一种基于多任务迭代学习的论辩挖掘方法.该方法将论辩挖掘三个任务并行地联合在一起学习,首先通过深度卷积神经网络(CNN)和高速神经网络(Highway Network),获得文本字符和词级别的浅层共享参数表示;然后输入双向长短时记忆循环神经网络(Bi-LSTM),利用论辩挖掘三个任务之间的关联信息进行同时训练,不仅可以避免错误传播,而且能够克服冗余信息的产生;最后,联结三个任务的Bi-LSTM网络输出作为下一次迭代的输入,来提高模型的性能.实验采用了德国UKP实验室公开的学生论文数据集,实验结果表明,与目前最好的基准方法对比,该方法的准确率指标提高了2.74%,“ F1 (100%)”和“ F1 (50%)”指标分别提高了1.05%和1.19%,很好地验证了该方法的有效性。展开更多
文摘现有的光流估计网络为了获得更高的精度,往往使用相关性成本量和门控循环单元(gate recurrent unit,GRU)来进行迭代优化,但是这样会导致计算量大并限制了在边缘设备上的部署性能。为了实现更轻量的光流估计方法,本文提出局部约束与局部扩张模块(local constraint and local dilation module,LC-LD module),通过结合卷积和一次轴注意力来替代自注意力,以较低的计算量对每个匹配特征点周边区域内不同重要程度的关注,生成更准确的相关性成本量,进而降低迭代次数,达到更轻量化的目的。其次,提出了混洗凸优化上采样,通过将分组卷积、混洗操作与凸优化上采样相结合,在实现其参数数量降低的同时进一步提高精度。实验结果证明了该方法在保证高精度的同时,运行效率显著提升,具有较高的应用前景。
文摘论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流水线模型仍然是独立的看待每个子任务,为每个子任务训练单独的模型,存在错误传播的问题,且在训练过程中产生了冗余信息.因此,本文提出了一种基于多任务迭代学习的论辩挖掘方法.该方法将论辩挖掘三个任务并行地联合在一起学习,首先通过深度卷积神经网络(CNN)和高速神经网络(Highway Network),获得文本字符和词级别的浅层共享参数表示;然后输入双向长短时记忆循环神经网络(Bi-LSTM),利用论辩挖掘三个任务之间的关联信息进行同时训练,不仅可以避免错误传播,而且能够克服冗余信息的产生;最后,联结三个任务的Bi-LSTM网络输出作为下一次迭代的输入,来提高模型的性能.实验采用了德国UKP实验室公开的学生论文数据集,实验结果表明,与目前最好的基准方法对比,该方法的准确率指标提高了2.74%,“ F1 (100%)”和“ F1 (50%)”指标分别提高了1.05%和1.19%,很好地验证了该方法的有效性。