期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
代码移交测试模型及其应用 被引量:1
1
作者 李军 张国柱 雍少为 《现代电子技术》 2008年第2期110-112,共3页
传统软件测试模型存在许多缺陷,为了消除这些缺陷,提高软件测试效率,根据Marick基于代码移交的测试思想,重点从代码移交、迭代开发等方面对测试模型进行研究,提出代码移交测试模型。通过在一个综合信息处理与监控测试软件的应用中对该... 传统软件测试模型存在许多缺陷,为了消除这些缺陷,提高软件测试效率,根据Marick基于代码移交的测试思想,重点从代码移交、迭代开发等方面对测试模型进行研究,提出代码移交测试模型。通过在一个综合信息处理与监控测试软件的应用中对该模型进行验证得知,代码移交测试模型可以有效提高测试效率,降低测试成本。 展开更多
关键词 软件测试模型 码移交 测试过程 迭代测试
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
2
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部