期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
考虑边缘效应的扭转微镜的动力响应分析 被引量:2
1
作者 袁丽芸 向宇 陆静 《振动与冲击》 EI CSCD 北大核心 2007年第12期122-126,共5页
目前对扭转微镜力学特性方面的研究主要围绕静态特性展开,对于其动态特性的分析,已经给出了非耦合与耦合两种模型,但模型中的静电驱动力与驱动扭矩都是建立在无穷大板电容的基础上。而实际应用中的扭转微镜是有限尺度的,即在边缘处电力... 目前对扭转微镜力学特性方面的研究主要围绕静态特性展开,对于其动态特性的分析,已经给出了非耦合与耦合两种模型,但模型中的静电驱动力与驱动扭矩都是建立在无穷大板电容的基础上。而实际应用中的扭转微镜是有限尺度的,即在边缘处电力线会发生泄漏和弯曲,从而产生边缘效应。引入有限板电容的静电力修正公式,计及边缘效应对扭转微镜动态响应的影响。由于在计及边缘效应后,系统方程的驱动力项比较复杂,不能导出其解析表达式,故采用了数值积分方法进行相关处理,并采用迭代修正齐次扩容精细积分法求解非线性动力方程,得到了稳定、精确的数值解。计算结果显示,动态响应幅值在计及边缘效应后比未计及时要大,且扭转微镜的尺寸参数对边缘效应的影响有很大的关联性。 展开更多
关键词 MEMS 扭转微镜 边缘效应 迭代修正齐次扩容精细积分法 非线性振动
在线阅读 下载PDF
一种分析静电驱动微悬臂梁变形的高精度算法
2
作者 陆静 韦笑梅 马小强 《广西工学院学报》 CAS 2008年第1期34-37,共4页
考虑静电力边缘效应的影响,建立了微悬臂梁的静态变形分析模型,通过梁弯曲理论将控制方程化为一阶非线性微分方程组,结合打靶法和迭代修正齐次扩容精细积分法提出了一种分析微悬臂梁变形的半解析、半数值算法,同时,采用增量迭代保证了... 考虑静电力边缘效应的影响,建立了微悬臂梁的静态变形分析模型,通过梁弯曲理论将控制方程化为一阶非线性微分方程组,结合打靶法和迭代修正齐次扩容精细积分法提出了一种分析微悬臂梁变形的半解析、半数值算法,同时,采用增量迭代保证了求解的收敛性。数值算例表明,本文所提出的方法具有较高的精度和稳定性,是分析微悬臂梁变形的一种有效方法。 展开更多
关键词 微悬臂梁 打靶法 迭代修正齐次扩容精细积分法 增量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部