Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its c...Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal d...A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal delivery system.The bidirectional interaction between the STP and DC magnetic fields was simplified as a unilateral one,and the fully coupled solidification transport equations were numerically solved by the finite volume method(FVM).While the magnetic field contours for a localized DC magnetic field were calculated by software ANSYS and then incorporated into a three-dimensional(3-D)steady model of the liquid cavity in the mold by means of indirect coupling.A new FVM-based direct-SIMPLE algorithm was adopted to solve the iterations of pressure-velocity(P-V).The braking effects of DC magnetic fields with various configurations were evaluated and compared with those without static magnetic field(SMF).The results show that 0.6 T magnetic field with combination configuration contributes to forming an isokinetic feeding of melt,the re-circulation zone is shifted towards the back wall of reservoir,and the velocity difference on the direction of height decreases from 0.1 m/s to 0.Furthermore,the thickness of solidified skull increases uniformly from 0.45 mm to 1.36 mm on the chilled substrate(belt)near the exit.展开更多
基金Project(50634030) supported by the National Natural Science Foundation of ChinaProject(20090042120005) supported by the Doctorate Foundation of the Ministry of Education of ChinaProject(2006CB605208-1) supported by the State Basic Research Program of China
文摘Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金Projects(51071062,51271068,51274077)supported by the National Natural Science Foundation of ChinaProject(2011CB605504)supported by the National Basic Research Program(973 Program)of China
文摘A theoretical investigation of fluid flow,heat transfer and solidification(solidification transfer phenomena,STP)was presented which coupled with direct-current(DC)magnetic fields in a high-speed strip-casting metal delivery system.The bidirectional interaction between the STP and DC magnetic fields was simplified as a unilateral one,and the fully coupled solidification transport equations were numerically solved by the finite volume method(FVM).While the magnetic field contours for a localized DC magnetic field were calculated by software ANSYS and then incorporated into a three-dimensional(3-D)steady model of the liquid cavity in the mold by means of indirect coupling.A new FVM-based direct-SIMPLE algorithm was adopted to solve the iterations of pressure-velocity(P-V).The braking effects of DC magnetic fields with various configurations were evaluated and compared with those without static magnetic field(SMF).The results show that 0.6 T magnetic field with combination configuration contributes to forming an isokinetic feeding of melt,the re-circulation zone is shifted towards the back wall of reservoir,and the velocity difference on the direction of height decreases from 0.1 m/s to 0.Furthermore,the thickness of solidified skull increases uniformly from 0.45 mm to 1.36 mm on the chilled substrate(belt)near the exit.