为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密...为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密度函数(Gaussian Mixture Model and Probability Density Function,GMM-PDF)建立第1层模型,即驾驶人期望跟车距离模型。然后,将期望跟车距离参数引入模型,基于高斯混合-隐马尔可夫方法(Gaussian Mixture Model and Hidden Markov Model,GMM-HMM)学习驾驶习性,建立第2层模型预测加速度,即个性化驾驶人跟驰模型。其次,研究不同高斯分量个数对模型效果的影响,对比双层模型与Gipps模型、最优间距模型(Optimal Distance Model,ODM)、单层模型及通用模型的性能。最后,8位被试驾驶人的自然驾驶行为数据验证结果表明:高斯分量数量与模型性能存在一定的正相关性;在最优高斯分量数量下,8位被试驾驶人在训练集上预测误差均值为0.101 m·s^(-2),在测试集上为0.123 m·s^(-2);随机选取其中1位驾驶人的2个跟车片段数据进行模型计算,结果显示,加速度的平均误差绝对值分别为0.087 m·s^(-2)和0.096 m·s^(-2),预测效果优于Gipps模型、ODM模型、单层模型及通用模型30%以上,与驾驶人实际跟驰行为的吻合度更高。展开更多
提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了...提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法.展开更多
针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确...针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确定状态数、状态转移矩阵、观察值概率分布以及最终的突发故障状态;然后,对新采集的观测数据,通过Viterbi算法解码出该观测数据对应的当前状态;最后,计算该状态到达突发故障状态的时间间隔,从而可以对突发故障进行预测。仿真和实验结果表明,该方法能够实现对突发故障的预测,并且符合标准预测指标的要求。展开更多
文摘为满足智能车辆的个性化需求,提高智能车辆人-机交互协同的满意度和接受度,构筑双层驾驶人跟驰模型框架,提出自适应驾驶人期望跟车间距和行为习惯的个性化驾驶人跟驰模型。首先,提取个体驾驶人跟驰均衡状态的数据,采用高斯混合和概率密度函数(Gaussian Mixture Model and Probability Density Function,GMM-PDF)建立第1层模型,即驾驶人期望跟车距离模型。然后,将期望跟车距离参数引入模型,基于高斯混合-隐马尔可夫方法(Gaussian Mixture Model and Hidden Markov Model,GMM-HMM)学习驾驶习性,建立第2层模型预测加速度,即个性化驾驶人跟驰模型。其次,研究不同高斯分量个数对模型效果的影响,对比双层模型与Gipps模型、最优间距模型(Optimal Distance Model,ODM)、单层模型及通用模型的性能。最后,8位被试驾驶人的自然驾驶行为数据验证结果表明:高斯分量数量与模型性能存在一定的正相关性;在最优高斯分量数量下,8位被试驾驶人在训练集上预测误差均值为0.101 m·s^(-2),在测试集上为0.123 m·s^(-2);随机选取其中1位驾驶人的2个跟车片段数据进行模型计算,结果显示,加速度的平均误差绝对值分别为0.087 m·s^(-2)和0.096 m·s^(-2),预测效果优于Gipps模型、ODM模型、单层模型及通用模型30%以上,与驾驶人实际跟驰行为的吻合度更高。
文摘提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法.
文摘针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确定状态数、状态转移矩阵、观察值概率分布以及最终的突发故障状态;然后,对新采集的观测数据,通过Viterbi算法解码出该观测数据对应的当前状态;最后,计算该状态到达突发故障状态的时间间隔,从而可以对突发故障进行预测。仿真和实验结果表明,该方法能够实现对突发故障的预测,并且符合标准预测指标的要求。