期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
连续隐半马尔科夫模型在轴承性能退化评估中的应用 被引量:19
1
作者 李巍华 李静 张绍辉 《振动工程学报》 EI CSCD 北大核心 2014年第4期613-620,共8页
连续隐半Markov模型(Continuous hidden semi-Markov model,CHSMM)是隐Markov模型(Hidden Markov model,HMM)的一种扩展形式,可用于时间序列过程的动态建模。通过加入状态分布参数并对多组观测值进行连续化,可加强模型对新观测值的处理... 连续隐半Markov模型(Continuous hidden semi-Markov model,CHSMM)是隐Markov模型(Hidden Markov model,HMM)的一种扩展形式,可用于时间序列过程的动态建模。通过加入状态分布参数并对多组观测值进行连续化,可加强模型对新观测值的处理能力以及对状态驻留时间的建模能力。利用该方法建立了轴承性能退化的评估模型。首先,分析振动信号并提取频带能量作为退化特征;然后将正常状态下的特征样本作为模型的观测值对CHSMM进行训练;最后将待测的特征样本输入模型,得到待测样本相对于所建立正常模型的输出概率,作为轴承性能退化状态的标志。轴承疲劳寿命试验结果表明:所提的评估模型能较好地刻画轴承性能退化的过程,并能在早期对轴承的性能退化做出预警。 展开更多
关键词 故障预测 轴承 连续隐半马尔科夫模型 频带能量 性能退化评估
在线阅读 下载PDF
基于时变状态转移隐半马尔科夫模型的寿命预测 被引量:15
2
作者 何兆民 王少萍 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第8期47-53,共7页
隐半马尔科夫模型在进行系统状态估计及寿命预测时,其状态转移概率矩阵是固定值,得到的剩余寿命预测值呈阶梯状变化,与系统的实际剩余寿命值之间存在着较大的误差.针对上述问题,提出了具有时变状态转移概率矩阵的隐半马尔科夫模型,根据... 隐半马尔科夫模型在进行系统状态估计及寿命预测时,其状态转移概率矩阵是固定值,得到的剩余寿命预测值呈阶梯状变化,与系统的实际剩余寿命值之间存在着较大的误差.针对上述问题,提出了具有时变状态转移概率矩阵的隐半马尔科夫模型,根据系统的3种典型退化状态分析,给出3种不同的状态转移系数.与初始状态转移矩阵相结合,得到随时间变化的状态转移矩阵.提高系统在当前健康状态下的剩余持续时间估计精度,最终得到更为准确的总体剩余寿命预测值.结果表明,基于时变状态转移概率矩阵的隐半马尔科夫模型相比传统的隐半马尔科夫模型,可显著提高剩余寿命预测的准确性. 展开更多
关键词 时变状态转移概率 马尔科夫模型 状态估计 寿命预测
在线阅读 下载PDF
基于脑电功率谱-连续隐马尔科夫链的精神疲劳分级模型 被引量:4
3
作者 赵春临 郑崇勋 赵敏 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第12期1474-1478,共5页
提取多通道脑电(EEG)功率谱特征,训练连续高斯密度混合隐马尔科夫模型(CHMM),建立了基于功率谱-CHMM的精神疲劳分级模型.分级结果表明:EEG各节律功率谱及其比值是精神疲劳的敏感指标,CHMM对于不同的精神疲劳状态具有较高的分类精度,最... 提取多通道脑电(EEG)功率谱特征,训练连续高斯密度混合隐马尔科夫模型(CHMM),建立了基于功率谱-CHMM的精神疲劳分级模型.分级结果表明:EEG各节律功率谱及其比值是精神疲劳的敏感指标,CHMM对于不同的精神疲劳状态具有较高的分类精度,最高分类正确率达到97.5%;在训练样本相同的情况下,CHMM比反向传输人工神经网络具有更高的分类精度. 展开更多
关键词 连续马尔科夫模型 脑电 功率谱 精神疲劳
在线阅读 下载PDF
连续隐马尔科夫模型在多基地目标识别中的应用 被引量:2
4
作者 温涛 许枫 +1 位作者 杨娟 王梦宾 《应用声学》 CSCD 北大核心 2017年第6期512-520,共9页
多基地声纳组网探测系统是目前大范围水下安保领域的研究热点。综合利用多基地系统中各个声纳节点的信息进行水下目标识别是亟待解决的问题。利用传统的多传感器融合的方法进行多基地水下目标识别,往往忽略了各声纳节点之间的相关性,效... 多基地声纳组网探测系统是目前大范围水下安保领域的研究热点。综合利用多基地系统中各个声纳节点的信息进行水下目标识别是亟待解决的问题。利用传统的多传感器融合的方法进行多基地水下目标识别,往往忽略了各声纳节点之间的相关性,效果并不理想。针对这一问题,本文提出了利用连续隐马尔科夫模型(CHMM)进行多基地水下目标识别的方法。首先利用RELAX算法提取了目标在不同分置角上回波的强散射点特征,组成观测向量,利用Baum-Welch方法对CHMM参数进行训练,然后计算待识别目标的特征值观测序列在不同模型下的似然概率。对所有目标重复此过程,取概率最大值对应的目标类别为最后的识别结果。在消声水池开展多基地模拟实验,对四类目标进行了识别,利用CHMM方法得到的多基地水下目标融合识别率比多基地声纳下单声纳节点的最高识别率提高了30%。 展开更多
关键词 多基地 目标识别 连续马尔科夫模型 RELAX算法
在线阅读 下载PDF
基于隐半马尔科夫退化模型的非等周期预防性维修优化 被引量:12
5
作者 苏春 李乐 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期342-349,共8页
以单位时间维修费用率最小化为目标,研究非等周期下预防性维修优化问题.采用隐半马尔科夫模型(HSMM)完成退化过程时间序列的动态建模,采用多维特征变量描述设备退化状态,建立设备性能退化评估模型.为减小信号噪声对HSMM训练的影响,采用... 以单位时间维修费用率最小化为目标,研究非等周期下预防性维修优化问题.采用隐半马尔科夫模型(HSMM)完成退化过程时间序列的动态建模,采用多维特征变量描述设备退化状态,建立设备性能退化评估模型.为减小信号噪声对HSMM训练的影响,采用经验模态分解(EMD)分析传感器信号,获得降噪后的退化特征;将多维特征样本作为模型观测值完成HSMM训练,并获取状态转移函数矩阵;以役龄回退因子描述维修效果,采用增强精英保留遗传算法(SEGA)求解维修优化模型,得到维修次数和维修间隔的优化解.以某航空发动机全寿命周期检测数据为例,完成案例分析.结果表明:针对4个退化状态下的非等周期维修模型,初始维修周期和维修总次数分别为13.79、19,每个作业周期费用率为257499美元,为预防性维修计划的制定提供理论依据. 展开更多
关键词 马尔科夫模型 退化模型 非等周期维修 维修优化
在线阅读 下载PDF
层次狄利克雷过程隐半马尔科夫模型识别飞行员脑疲劳状态 被引量:2
6
作者 罗映雪 贾博 +2 位作者 裘旭益 邓平煜 吴奇 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第6期1196-1206,共11页
在民航及军用航空领域,长期恶劣飞行环境的影响将导致飞行员精神不集中,产生疲劳现象,严重影响飞行员的判断能力.因此,研究飞行员的脑疲劳状态对飞行安全来说非常重要.脑疲劳推理主要面临二个基本问题:一是如何提取脑疲劳认知的特征,二... 在民航及军用航空领域,长期恶劣飞行环境的影响将导致飞行员精神不集中,产生疲劳现象,严重影响飞行员的判断能力.因此,研究飞行员的脑疲劳状态对飞行安全来说非常重要.脑疲劳推理主要面临二个基本问题:一是如何提取脑疲劳认知的特征,二是如何识别带驻留时间的脑疲劳认知潜在状态.针对第1个问题,本文提出一种基于Kaiser窗函数的光滑伪仿射维格纳–维勒分布的方法,提取主要认知脑区的脑电节律的瞬时频谱特征.并与其他时频分布的特征进行对比,本文的特征具有明显的局部显著性.针对第2个问题,本文建立一种基于剩余寿命的隐半马尔科夫模型(HSMM)的飞行员脑疲劳认知动力学推理模型,解决了传统隐马尔科夫模型潜状态快速切换及无法对潜状态驻留时间进行建模的问题.飞行员脑疲劳认知行为是由多通道的脑节律融合的整体表现行为,建立多通道共享狄利克雷过程先验参数的层次学习网络,形成共享疲劳认知主题的子任务学习机制.实验结果显示本文的模型具有较高的推理飞行员脑疲劳状态的能力,具有广泛的应用价值. 展开更多
关键词 脑电信号 飞行员疲劳 基于剩余寿命的马尔科夫模型 光滑伪仿射维格纳-维勒分布
在线阅读 下载PDF
基于优化VMD和连续隐马尔科夫模型的管道堵塞状态评估 被引量:3
7
作者 伍林峰 冯早 朱雪峰 《振动与冲击》 EI CSCD 北大核心 2020年第22期214-222,233,共10页
面向U型管堵塞状态演变过程中故障程度的评估问题,提出一种基于低频声压信号分析和连续隐马尔科夫模型(CHMM)的U型管堵塞状态评估方法。该方法利用声波作为激励来观测U型管沉积物的堆积程度,对不同堵塞状态下的低频声压信号进行变分模... 面向U型管堵塞状态演变过程中故障程度的评估问题,提出一种基于低频声压信号分析和连续隐马尔科夫模型(CHMM)的U型管堵塞状态评估方法。该方法利用声波作为激励来观测U型管沉积物的堆积程度,对不同堵塞状态下的低频声压信号进行变分模态分解(VMD),根据分量幅值谱图确定变分模态分解的最佳模态分解数k并通过声压级变换筛选有效的IMF分量;然后提取有效IMF分量的多尺度熵(MSE)特征,构建反映U型管不同程度堵塞状态的特征向量,最后将特征向量用于CHMM模型训练,建立能对U型管堵塞状态进行评估的模型。通过对U型管不同程度堵塞状态的试验数据进行测试,评估结果表明:该模型能准确评估U型管堵塞状态的程度变化,具有一定的工程应用价值。 展开更多
关键词 U型管 声压信号 变分模态分解(VMD) 堵塞状态 连续马尔科夫模型(CHMM)
在线阅读 下载PDF
基于隐马尔科夫模型的CPM信号盲Turbo均衡算法 被引量:2
8
作者 钟凯 彭华 葛临东 《通信学报》 EI CSCD 北大核心 2015年第3期223-231,共9页
针对高阶连续相位调制信号(CPM)盲均衡中存在的均衡性能较差以及不容易收敛等问题,从隐马尔科夫模型(HMM)的角度出发,建立一种新的EM-SOVA信道盲均衡方法,并结合Turbo均衡思想,提出了一种适用于高阶CPM信号的盲Turbo均衡算法。该算法通... 针对高阶连续相位调制信号(CPM)盲均衡中存在的均衡性能较差以及不容易收敛等问题,从隐马尔科夫模型(HMM)的角度出发,建立一种新的EM-SOVA信道盲均衡方法,并结合Turbo均衡思想,提出了一种适用于高阶CPM信号的盲Turbo均衡算法。该算法通过将SOVA内嵌到EM算法的迭代过程中,有效改善了信道均衡效果,同时使用Turbo均衡的软信息迭代处理来进一步提高低信噪比条件下系统性能。理论分析和仿真结果表明,所提算法具有良好的盲均衡性能以及收敛性。 展开更多
关键词 连续相位调制 马尔科夫模型 软输出维特比算法 期望最大化算法 TURBO均衡
在线阅读 下载PDF
基于加权自回归隐马尔科夫模型的语音识别 被引量:1
9
作者 冯岑明 杨亚民 《统计与决策》 CSSCI 北大核心 2012年第22期80-82,共3页
对于非特定人语音识别问题,针对隐马尔科夫模型中假设提取的观察矢量之间相互独立且数据不足的困难,文章在连续隐马尔科夫(CHMM)模型的基础上提出了基于加权自回归HMM(WARHMM)的语音识别方法,该方法利用加权自回归过程得到观察矢量,从... 对于非特定人语音识别问题,针对隐马尔科夫模型中假设提取的观察矢量之间相互独立且数据不足的困难,文章在连续隐马尔科夫(CHMM)模型的基础上提出了基于加权自回归HMM(WARHMM)的语音识别方法,该方法利用加权自回归过程得到观察矢量,从而获得隐状态输出。这种方法可以充分利用已有的观察数据,适合于实际随机性较强的语音信号的识别。实验结果证明了提出方法的有效性。 展开更多
关键词 连续马尔科夫模型 加权自回归马尔科夫模型 语音识别
在线阅读 下载PDF
基于隐半马尔可夫模型的用户兴趣特征提取
10
作者 琚春华 章敏 《计算机工程与设计》 CSCD 北大核心 2011年第12期4206-4209,共4页
针对网络用户兴趣行为特征的抽取,提出了一种基于隐半马尔可夫模型的用户兴趣特征提取模型,通过用状态驻留时间的概率来控制用户浏览行为,使描述兴趣特征的隐状态和时间的相关性更紧密地结合起来,并且根据隐半马尔可夫模型可以产生多观... 针对网络用户兴趣行为特征的抽取,提出了一种基于隐半马尔可夫模型的用户兴趣特征提取模型,通过用状态驻留时间的概率来控制用户浏览行为,使描述兴趣特征的隐状态和时间的相关性更紧密地结合起来,并且根据隐半马尔可夫模型可以产生多观察值序列的特性,把文本信息划分成多个文本块子区域,使每个子区域的特征和其中一个观察值序列对应起来。实验结果表明,利用隐半马尔可夫模型进行特征提取比HMM方法有更高的准确率和召回率。 展开更多
关键词 用户兴趣 马尔科模型 马尔科夫模型 特征提取 文本挖掘
在线阅读 下载PDF
半连续HMM码本生成算法的研究 被引量:1
11
作者 李军 朱小燕 王东 《计算机工程》 CAS CSCD 北大核心 2002年第12期131-133,共3页
对基于半连续隐马尔科夫模型(SCHMM)语音识别系统的码本生成算法及其原理进行了探讨。阐述了译码器扰动简化随机松弛聚类算法(SR-D),并将其应用到初始码本生成中。实验结果表明这种方法能显著地提高系统性能。初始码本生成后,采用最... 对基于半连续隐马尔科夫模型(SCHMM)语音识别系统的码本生成算法及其原理进行了探讨。阐述了译码器扰动简化随机松弛聚类算法(SR-D),并将其应用到初始码本生成中。实验结果表明这种方法能显著地提高系统性能。初始码本生成后,采用最大似然准则对生成的码本进行了训练,使得码本和SCHMM其它参数达到较好的一致。也探讨了码本大小及其对最终性能的影响并给出了相关实验结果。 展开更多
关键词 HMM 码本生成算法 语音识别 连续马尔科夫模型 聚类 随机松驰
在线阅读 下载PDF
基于半CRF模型的百科全书文本段落划分 被引量:2
12
作者 许勇 宋柔 《北京工业大学学报》 CAS CSCD 北大核心 2008年第2期204-210,共7页
介绍了基于半条件随机域(semi-Markov conditional random fields,简称semi-CRFs)模型的百科全书文本段落划分方法.为了克服单纯的HMM模型和CRF模型的段落类型重复问题,以经过整理的HMM模型状态的后验分布为基本依据,使用了基于词汇语... 介绍了基于半条件随机域(semi-Markov conditional random fields,简称semi-CRFs)模型的百科全书文本段落划分方法.为了克服单纯的HMM模型和CRF模型的段落类型重复问题,以经过整理的HMM模型状态的后验分布为基本依据,使用了基于词汇语义本体知识库的段落开始特征以及针对特定段落类型的提示性特征来进一步适应目标文本的特点.实验结果表明,该划分方法可以综合利用各种不同类型的信息,比较适合百科全书文本的段落结构,可以取得比单纯的HMM模型和CRF模型更好的性能. 展开更多
关键词 自然语言处理 机器学习 马尔科夫模型 文本段落划分 条件随机域模型
在线阅读 下载PDF
基于IMF能量矩和HSMM模型的滚动轴承故障诊断方法 被引量:13
13
作者 张敏 崔海龙 +1 位作者 陈曦晖 程刚 《组合机床与自动化加工技术》 北大核心 2015年第10期101-103,107,共4页
针对滚动轴承振动信号较为复杂以及故障状态难以识别的问题,提出基于本征模态函数能量矩和隐半马尔科夫模型(HSMM)相结合的滚动轴承故障诊断的研究方法,首先利用经验模态分解(EMD)方法具有自适应分解的优点,将振动信号分解成若干本征模... 针对滚动轴承振动信号较为复杂以及故障状态难以识别的问题,提出基于本征模态函数能量矩和隐半马尔科夫模型(HSMM)相结合的滚动轴承故障诊断的研究方法,首先利用经验模态分解(EMD)方法具有自适应分解的优点,将振动信号分解成若干本征模态函数(IMF),然后计算本征模态函数能量矩作为故障特征信息,构造特征向量,建立隐半马尔科夫模型对滚动轴承故障状态进行诊断识别。实验表明,该方法可以有效提取滚动轴承的故障特征信息,对四种滚动轴承状态的识别率在90%以上,实现对滚动轴承故障的精确诊断识别。 展开更多
关键词 故障诊断 经验模态分解 马尔科夫模型
在线阅读 下载PDF
基于瓶颈特征的藏语拉萨话连续语音识别研究 被引量:9
14
作者 周楠 赵悦 +3 位作者 李要嫱 徐晓娜 才旺拉姆 吴立成 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第2期249-254,共6页
基于从深度神经网络提取的瓶颈特征具有语音长时相关性和紧凑表示的特点,将瓶颈特征及其与MFCC的复合特征用于藏语连续语音识别任务中,可以代替传统的MFCC特征进行GMM-HMM声学建模。在藏语拉萨话连续语音识别任务中的实验表明,瓶颈特征... 基于从深度神经网络提取的瓶颈特征具有语音长时相关性和紧凑表示的特点,将瓶颈特征及其与MFCC的复合特征用于藏语连续语音识别任务中,可以代替传统的MFCC特征进行GMM-HMM声学建模。在藏语拉萨话连续语音识别任务中的实验表明,瓶颈特征的复合特征取得比深度神经网络后验特征和单瓶颈特征更好的识别表现。 展开更多
关键词 藏语拉萨话 连续语音识别 高斯混合–马尔科夫模型 瓶颈特征 深度神经网络
在线阅读 下载PDF
基于联锁运行数据的转辙机健康状态智能分析方法 被引量:5
15
作者 张轩赫 梁志国 +1 位作者 张宏扬 王海峰 《北京交通大学学报》 CAS CSCD 北大核心 2023年第2期137-146,共10页
转辙机是重要的安全关键信号设备,目前多依赖人工经验进行健康状态分析,存在误差大、预测不准的问题,现场维修维护面临很大压力.基于转辙机控制原理,利用联锁运行数据,提出一种结合深度置信网络和连续隐半马尔科夫模型的智能分析方法,... 转辙机是重要的安全关键信号设备,目前多依赖人工经验进行健康状态分析,存在误差大、预测不准的问题,现场维修维护面临很大压力.基于转辙机控制原理,利用联锁运行数据,提出一种结合深度置信网络和连续隐半马尔科夫模型的智能分析方法,对转辙机健康状态进行评估预测.首先,通过深度置信网络提取特征作为连续隐半马尔科夫模型的输入,利用联锁状态数据对预测模型进行训练,以不同观测值序列输出最大似然概率来确定转辙机的退化状态;然后,通过各退化状态驻留时间均值及方差计算转辙机退化状态的驻留时间,以此来预测转辙机健康状态的持续时间.实验表明,该方法在状态预测准确率方面达到83.08%,较传统隐半马尔可夫模型提高约13%,具有较好的预测精度,能够有效支撑现场维修维护工作.本文对信号设备的智能运维具有一定的借鉴作用. 展开更多
关键词 健康状态 转辙机 深度置信网络 连续隐半马尔科夫模型
在线阅读 下载PDF
基于CHMM的齿轮箱状态识别研究 被引量:21
16
作者 滕红智 赵建民 +2 位作者 贾希胜 张星辉 王正军 《振动与冲击》 EI CSCD 北大核心 2012年第5期92-96,127,共6页
针对离散隐Markov模型(HMM)在状态识别中的不足,结合齿轮箱全寿命实验数据,研究了基于连续隐Markov模型(CHMM)的状态识别方法。建立了基于齿轮箱原始振动信号的CHMM状态识别框架,提出了基于K均值算法和交叉验证相结合的状态数优化方法,... 针对离散隐Markov模型(HMM)在状态识别中的不足,结合齿轮箱全寿命实验数据,研究了基于连续隐Markov模型(CHMM)的状态识别方法。建立了基于齿轮箱原始振动信号的CHMM状态识别框架,提出了基于K均值算法和交叉验证相结合的状态数优化方法,通过计算待确定观测数据的极大似然概率值来确定齿轮箱当前状态。结果表明,用原始振动信号作为CHMM的输入可以实现状态识别,验证了模型的有效性,为齿轮箱基于状态的维修提供了科学依据。 展开更多
关键词 连续马尔科夫模型 K均值 交叉验证
在线阅读 下载PDF
基于CHMM的轴承性能退化程度综合评估方法研究 被引量:12
17
作者 姜万录 杨凯 +1 位作者 董克岩 张生 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第9期2014-2021,共8页
针对传统轴承性能退化评估方法中退化阶段划分的主观性以及连续隐马尔科夫模型在建立评估模型时只考虑正常状态下的样本所引起评估结果的不足,提出了一种基于连续隐马尔科夫模型的轴承性能退化程度综合评估方法。该方法首先通过支持向... 针对传统轴承性能退化评估方法中退化阶段划分的主观性以及连续隐马尔科夫模型在建立评估模型时只考虑正常状态下的样本所引起评估结果的不足,提出了一种基于连续隐马尔科夫模型的轴承性能退化程度综合评估方法。该方法首先通过支持向量聚类方法将轴承全寿命周期划分成若干个退化阶段,然后从每个阶段中提取一定比例的样本用于训练,采用轴承正常阶段的训练样本建立轴承的连续隐马尔科夫模型,将不同退化阶段的训练样本输入模型,分别得到不同阶段样本相对于所建立正常阶段的连续隐马尔科夫模型的输出概率,据此得到样本隶属于不同退化阶段的隶属函数分布。最后,采用集对分析的方法建立轴承测试样本相对于正常阶段样本的联系度,并最终得到轴承性能退化程度的综合得分。通过利用轴承全寿命数据,并与传统连续隐马尔科夫模型及传统无量纲指标进行了对比,验证了所提出的综合评估方法在轴承性能退化评估方面的有效性。 展开更多
关键词 连续马尔科夫模型 综合评价方法 集对分析 支持向量聚类
在线阅读 下载PDF
基于子字单元的维吾尔语语音识别研究 被引量:5
18
作者 薛化建 董兴华 +2 位作者 周喜 吐尔洪.吾司曼 李晓 《计算机工程》 CAS CSCD 北大核心 2011年第20期208-210,共3页
为提高维吾尔语语音识别的识别率,在分析维吾尔语特点的基础上,设计一种基于子字单元的维吾尔语语音识别总体结构,指出维吾尔语单词的发音模型,给出构建子字发音字典的方法,及其以子字单元为基础构建语言模型与声学模型的方法。在一个... 为提高维吾尔语语音识别的识别率,在分析维吾尔语特点的基础上,设计一种基于子字单元的维吾尔语语音识别总体结构,指出维吾尔语单词的发音模型,给出构建子字发音字典的方法,及其以子字单元为基础构建语言模型与声学模型的方法。在一个语音库上进行实验,采用一种非监督的词切分方法对维吾尔语单词进行词切分,生成子字。实验结果表明,基于子字单元的维吾尔语语音识别可以获得更好的识别结果。 展开更多
关键词 维吾尔语 词切分 子字单元 马尔科夫模型 连续语音识别
在线阅读 下载PDF
6LoWPAN网络安全问题的分析 被引量:3
19
作者 刘外喜 唐冬 +1 位作者 胡晓 郑晖 《电信科学》 北大核心 2010年第4期66-70,共5页
6LoWPAN网络有着广泛的应用前景,关于6LoWPAN网络安全的研究将直接决定6LoWPAN网络的应用进程。本文分析了6LoWPAN网络所面临的威胁,同时介绍了目前已有的防御方法,并提出了一种利用隐半马尔科夫模型建立蜜网防御系统的方案。
关键词 6LoWPAN 安全 IPV6 蜜网 马尔科夫模型
在线阅读 下载PDF
基于振动信号的轴承早期异常状态识别方法研究 被引量:3
20
作者 孙磊 贾云献 +2 位作者 刘峰 李华 腾红智 《轴承》 北大核心 2013年第7期59-63,共5页
针对轴承早期异常状态识别问题,提出了一种基于振动信号和HSMM-DBN的轴承早期异常状态识别方法,研究了隐半马尔科夫模型转换为动态贝叶斯网络(HSMM-DBN)的优点和基本过程,并应用该方法对试验数据进行了分析。结果表明,该方法能够有效识... 针对轴承早期异常状态识别问题,提出了一种基于振动信号和HSMM-DBN的轴承早期异常状态识别方法,研究了隐半马尔科夫模型转换为动态贝叶斯网络(HSMM-DBN)的优点和基本过程,并应用该方法对试验数据进行了分析。结果表明,该方法能够有效识别轴承故障的早期异常状态,为机械设备异常状态识别提供了一种新的有效方法。 展开更多
关键词 滚动轴承 故障诊断 马尔科夫模型 动态贝叶斯网络 异常状态识别
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部