为提高传统微生物燃料电池(MFC)在低温条件下的效率,实现实验装置放大化.本实验将连续搅拌反应系统(CSTR)与双极室微生物燃料电池系统相结合,连续流处理糖蜜废水,并间接回收金属单质,处理模拟电镀废水,考察系统的产电性能和废水处理效果...为提高传统微生物燃料电池(MFC)在低温条件下的效率,实现实验装置放大化.本实验将连续搅拌反应系统(CSTR)与双极室微生物燃料电池系统相结合,连续流处理糖蜜废水,并间接回收金属单质,处理模拟电镀废水,考察系统的产电性能和废水处理效果.结果表明,当系统稳定运行后,最高电压及功率密度分别可达到340 m V和58.65 m W·m-2.20 d后,系统COD去除率明显增加,最高COD去除率可达到81%.实验运行10 d后,银离子开始析出,最高去除率可达到90%左右.展开更多
文摘为提高传统微生物燃料电池(MFC)在低温条件下的效率,实现实验装置放大化.本实验将连续搅拌反应系统(CSTR)与双极室微生物燃料电池系统相结合,连续流处理糖蜜废水,并间接回收金属单质,处理模拟电镀废水,考察系统的产电性能和废水处理效果.结果表明,当系统稳定运行后,最高电压及功率密度分别可达到340 m V和58.65 m W·m-2.20 d后,系统COD去除率明显增加,最高COD去除率可达到81%.实验运行10 d后,银离子开始析出,最高去除率可达到90%左右.
文摘针对一类参数不确定的连续搅拌釜式反应器,使用了一种与被控对象无关的自耦比例–积分–微分(autocoupling proportional-integral-differential,ACPID)控制方法.该方法将系统内部所有不确定因素及外部扰动定义为一个总扰动,建立了以总扰动为激励的受控误差系统,并根据ACPID镇定规则建立了连续搅拌釜式反应器(continuous stirred tank reactor,CSTR)的ACPID控制系统.理论分析了ACPID控制系统的鲁棒稳定性和抗扰动鲁棒性.仿真结果表明了ACPID控制系统的有效性,在CSTR稳态调节控制领域具有重要的应用价值.