期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
用盾构连续开挖隧道后建筑浅埋地铁车站 被引量:9
1
《地铁与轻轨》 1994年第4期45-46,共2页
为提高浅埋地铁线路施工效率,1990年明斯克地铁设计院设计了盾构连续开挖隧道后建筑地铁车站法(图1),受到当时苏联国家发明局的认可。 方法的主要原则和优点: ——地铁结构和车站是在盾构开挖隧道后修建。 ——增加暗挖工段长度,减少车... 为提高浅埋地铁线路施工效率,1990年明斯克地铁设计院设计了盾构连续开挖隧道后建筑地铁车站法(图1),受到当时苏联国家发明局的认可。 方法的主要原则和优点: ——地铁结构和车站是在盾构开挖隧道后修建。 ——增加暗挖工段长度,减少车站施工时的明挖工程量; ——车站和区间的隧道按同一施工工艺修建; ——车站和区间的隧道结构彼此有区别,反映在衬砌环上的附加件和基本装配构件的数量上; 展开更多
关键词 地下铁道 地铁车站 施工技术 盾构连续开挖 隧道施工 车站建筑 浅埋暗挖
在线阅读 下载PDF
考虑多级采动效应的边坡失稳过程研究 被引量:2
2
作者 张拥军 陈关平 +3 位作者 李乾龙 孙涤 李博 万勇 《金属矿山》 CAS 北大核心 2015年第10期156-162,共7页
应用RFPA强度有限元软件建立连续开挖模型和一次开挖模型,对比不同开挖模式下多级边坡损伤机理和损伤过程,分析多级边坡多次采动过程中局部化岩体损伤、破坏、失稳过程,再现了多次采动影响下多级边坡局部失稳效应。结合金川集团石英石... 应用RFPA强度有限元软件建立连续开挖模型和一次开挖模型,对比不同开挖模式下多级边坡损伤机理和损伤过程,分析多级边坡多次采动过程中局部化岩体损伤、破坏、失稳过程,再现了多次采动影响下多级边坡局部失稳效应。结合金川集团石英石露天矿多级边坡现场监测数据进行分析,在强度折减的过程中引入连续采动,实现真正意义上的强度折减和采动效应,使得数值模拟破坏机理和破坏过程与实际破坏过程更为接近。主要表现在一次开挖和连续开挖只是在时间步骤、空间位置、多级边坡结构稳定性分析上不同,其损伤过程、损伤机理基本保持一致。多级边坡连续开采在时间、空间效应的影响下主要以局部失稳破坏为主。 展开更多
关键词 边坡稳定性 连续开挖 一次开挖 损伤机理 损伤过程
在线阅读 下载PDF
Differential uplift and settlement between inner column and diaphragm wall in top-down excavation 被引量:5
3
作者 王丽 郑刚 欧若楠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3578-3590,共13页
Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method... Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection. 展开更多
关键词 top-down method differential uplift differential settlement jump-layer excavation diaphragm wall with outriggers
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部