This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for ce...This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.展开更多
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti...A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.展开更多
文摘This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.
基金Projects(51205253,11272205)supported by the National Natural Science Foundation of ChinaProject(2012AA7052005)supported by the National High Technology Research and Development Program of China
文摘A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.