期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv5的违章建筑检测方法
被引量:
33
1
作者
于娟
罗舜
《计算机工程与应用》
CSCD
北大核心
2021年第20期236-244,共9页
针对无人机图像中违章建筑多为小目标且存在部分遮挡目标导致的检测速率慢、误检率高的问题,提出一种基于YOLOv5网络的违章建筑检测方法。在原来的批量标准化模块开始和结束处分别添加中心和缩放校准增强有效特征并形成更稳定的特征分布...
针对无人机图像中违章建筑多为小目标且存在部分遮挡目标导致的检测速率慢、误检率高的问题,提出一种基于YOLOv5网络的违章建筑检测方法。在原来的批量标准化模块开始和结束处分别添加中心和缩放校准增强有效特征并形成更稳定的特征分布,加强网络模型的特征提取能力。用平滑处理后的KL(Kullback-Leibler)散度损失函数替换原损失函数置信度中的交叉熵,进一步提高模型的泛化性能。对YOLOv5的主干特征提取网络进行改进,将残差模块替换为LSandGlass模块减少信息损失并剔除低分辨率的特征层以减少语义丢失。实验结果表明,与原版的YOLOv5相比,改进后模型的训练更容易使得网络收敛,检测违章建筑的速度有了较大提升,同时提高了检测的精确度。
展开更多
关键词
神经网络
YOLOv5
违章建筑检测
批量标准化
KL散度
在线阅读
下载PDF
职称材料
题名
基于YOLOv5的违章建筑检测方法
被引量:
33
1
作者
于娟
罗舜
机构
福州大学经济与管理学院
出处
《计算机工程与应用》
CSCD
北大核心
2021年第20期236-244,共9页
基金
国家自然科学基金(71771054)。
文摘
针对无人机图像中违章建筑多为小目标且存在部分遮挡目标导致的检测速率慢、误检率高的问题,提出一种基于YOLOv5网络的违章建筑检测方法。在原来的批量标准化模块开始和结束处分别添加中心和缩放校准增强有效特征并形成更稳定的特征分布,加强网络模型的特征提取能力。用平滑处理后的KL(Kullback-Leibler)散度损失函数替换原损失函数置信度中的交叉熵,进一步提高模型的泛化性能。对YOLOv5的主干特征提取网络进行改进,将残差模块替换为LSandGlass模块减少信息损失并剔除低分辨率的特征层以减少语义丢失。实验结果表明,与原版的YOLOv5相比,改进后模型的训练更容易使得网络收敛,检测违章建筑的速度有了较大提升,同时提高了检测的精确度。
关键词
神经网络
YOLOv5
违章建筑检测
批量标准化
KL散度
Keywords
neural network
YOLOv5
illegal buildings detection
batch normalization
KL divergence
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv5的违章建筑检测方法
于娟
罗舜
《计算机工程与应用》
CSCD
北大核心
2021
33
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部